У нас вы можете посмотреть бесплатно RAG (Retrieval-Augmented Generation) Explained for LLMs или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
You can book One to one consultancy session with me on Mentoga: https://mentoga.com/muhammadaammartufail #codanics #dataanalytics #pythonkachilla #pkc24 ✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅ 4-Months of Data Science to AI Agents Mentorship Program (DSAAMP) Hurry up! Register now, only few seats available. More information about the course and the registration link to google form: https://forms.gle/8dHbiu2TGmHTzgYY8 ✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅ --------------------------------------------------------------------------------------------------------------------------------------- Aaj ki video mein hum discuss karenge RAG (Retrieval-Augmented Generation) — yeh ek aisi AI technique hai jahan ek language model ko real-time knowledge bases se data fetch karne ki salahiyat di jati hai, taa-ke wo accurate aur up-to-date information generate kar sake. Agar aap soch rahe hain ke yeh LLMs se kitna different hai, aur RAG aapki chatbots, customer support, ya data-driven applications mein kya role play kar sakta hai, toh yeh video aap ke liye must-watch hai—woh bhi Urdu/Hindi mein, taake Pakistan aur India mein rehte hue aapko sab samajh aaye! Key Points Covered 1. RAG Kya Hai? • Retrieval system aur language model ka fusion • Kis tarah yeh approach LLM ko fresh aur relevant knowledge supply karta hai 2. Mechanics of RAG • Query formation, external database se information retrieve karna, aur final generated response • Real-world examples: chatbot integrating with knowledge graphs or enterprise data 3. Benefits & Use Cases • Up-to-date answers (live knowledge base) • Reduced hallucination (model ki andazay se hat kar actual data par rely karna) • Large-scale customer service, dynamic FAQs, ya real-time analytics 4. Challenges & Limitations • Data privacy aur content filtering • Infrastructure setup aur cost (external DB + AI model) • Ensuring metadata or indexing sahi tareeqay se ho 5. Future Outlook • Multimodal retrieval: text, images, videos, etc. • More advanced indexing and search algorithms • Enterprise-level adoption for domain-specific tasks Iss video ko dekhne ke baad aapko RAG ki foundation clear hogi, aur aap iss tech ko apne AI projects mein implement karne ke liye tayyar honge! ⸻ Stay Connected 1. Subscribe karein taake AI aur data science ki further updates miss na ho. 2. Like & Share karein agar aapko yeh explanation pasand aayi ho—dosre log bhi RAG ke baare mein seekh sakte hain. 3. Comment section mein apne sawal aur feedback zaroor dein—hum aapki madad ke liye hamesha tayyar hain! ⸻ #RAG #RetrievalAugmentedGeneration #AI #MachineLearning #NLP #DataScience #LLMs #Codanics #urdu #hindi #pakistan #india #science #recent #2025 #babaaammar #aammartufail Please share and like this video, also write your comment here and subscribe our channel. --------------------------------------------------------------------------------------------------------------------------------------- ✅Our Free Books: https://codanics.com/books/abc-of-sta... ✅Our website: https://www.codanics.com ✅Our Courses: https://www.codanics.com/courses ✅Our YouTube Channel: / @codanics ✅ Our whatsapp channel: https://whatsapp.com/channel/0029Va7n... ✅Our Facebook Group: / codanics ✅Our Discord group for community Discussion: / discord ✉️For more Details contact us at [email protected]