У нас вы можете посмотреть бесплатно Visual Algebra, Lecture 5.9: Equivariance and G-set homomorphisms или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Previously, we’ve seen that a G-set isomorphism is a bijection that commutes with the action. In this lecture, we’ll start with the concept of a G-set automorphism. These form a group, and they can be thought of as symmetries of the action graph. If H is the stabilizer of any element, then the G-set automorphism group is the quotient of the normalizer of H, by H itself. This arises in algebraic topology as the group of deck transformations of a covering space. We’ll also look at the concept of a G-set homomorphism. Finally, we’ll interpret the orbit-stabilizer theorem as the fundamental homomorphism theorem for G-sets. Namely, that every transitive G-set is just the quotient of G by the cosets of some subgroup. Course & book webpage (with complete lecture note slides, HW, exams, etc.): https://www.math.clemson.edu/~macaule... ------------------------------------------------------------------------------------------------------------------------------------------------------ 0:00 Introduction 1:08 Action equivalence vs. G-set isomorphism 2:47 Equivariant maps 5:49 A D₆-set automorphism 8:30 Automorphism of three different D₆-sets 10:31 Two G-set automorphism groups of size 4 12:44 Action graphs with C₄- and V₄-symmetries 13:25 Theorem and proof outline: Aut(H/G) ≅ N(H)/H 16:18 Lemma 1: Every G-set automorphism has the form Hg↦Hxg 18:30 Lemma 2: If Hg↦Hxg is a G-set automorphism, then x∈N(H) 21:55 Lemma 2: If x∈N(H), then Hg↦Hxg is a G-set automorphism 25:39 Proof of Aut(H/G) ≅ N(H)/H 30:56 N(H) vs. Ker(ϕ) in the subgroup lattice 34:07 G-set homomorphisms 36:11 An example of a D₆-set homomorphism 36:33 The "fundamental homomorphism theorem for G-sets"