У нас вы можете посмотреть бесплатно Toxic echo-chambers to barrier-crossing networks: Humanizing AI with Hasan Davulcu and Michael Cowan или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Utilizing AI to disaggregate barrier-bound and barrier-crossing social network engagements for narratives around race polarization in the USA. Related article in IEEE Internet Computing .. Towards a programmable Humanizing AI through scalable stance-directed architecture. Michael Cowan, Loyola State University, New Orleans, Louisiana. Hasan Davulcu, Arizona State University, Tempe, Arizona. Analysis of social attitudes and messaging on social media where AI can have a role identifying and reinforcing catalysing messaging for identity fusion towards social cohesiveness. Top-level of identity-fused communities. Identity fused subsets of communities. Orientation to black lives matter [BLM] and all lives matter [ALM] social cohorts. Barrier-crossing messaging .. Messages shared across partisan lines by both camps (BLM and ALM). Infrequent and represent a small subset of overall communications. General characteristics; Global Focus: Often centered on issues that are not exclusively tied to the U.S., allowing for a broader, less divisive appeal. 'Common Good' Themes: When related to U.S. issues, they emphasize universally recognized values such as justice, safety, and equality. Neutral Framing: Messages maintain neutrality, avoiding direct alignment with specific partisan agendas or ideologies, making them palatable to both sides. Chapters: 0:00 CRIC 2024 Sound 0.05 introduction and background with Michael Cowan 2.57 Hasan Davulcu overview of approach 8.07 identity fusion analysis 13.37 camp coded top-level communities 16.31 coveted persuadables .. not yet fused 17.59 network intelligence .. barrier leaders 22.38 linear model conceptualisation of race polarization in the USA 26.06 identifying and analysing the dynamics of cohorts and leaders 29.58 narrative intelligence 37.20 about barrier-crossing messaging 43.18 programmable peacemaking AI .. counter-narrative derivation 45.27 Michael Cowan .. conclusion .. why this matters for race in the USA 47.15 Q&A featuring responses in the room by Richard Caplan and by John Alderdice #socialpsychology #artificialintelligence #socialscience