У нас вы можете посмотреть бесплатно How AI Agents Learn to Remember | Google's Context Engineering Deep Dive или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
What if your AI agent could actually remember you — not just what you said five minutes ago, but your preferences, your workflows, your past decisions? In this deep dive, we break down Google's latest research paper on Context Engineering, the discipline that goes far beyond simple prompt engineering. We cover: 🔹 The 4-Phase Agent Lifecycle (Fetch → Prepare → Invoke → Upload) 🔹 Sessions as a Workbench — how agents manage ongoing conversations 🔹 Long-Context Compaction — what happens when context windows overflow 🔹 Memory vs RAG — why they're fundamentally different 🔹 Memory Manager Architecture — the central hub for all memory operations 🔹 Declarative vs Procedural Memory — knowing WHAT vs knowing HOW 🔹 Memory Organization Patterns — Collections, Structured Profiles, Rolling Summaries 🔹 Memory Scope & Multimodal Content — where memories live and what forms they take 🔹 Extraction, Consolidation & Provenance — how memories are created, updated, and trusted 🔹 Memory-as-a-Tool & Retrieval Pipeline — agent-driven memory access 🔹 Inference Injection — how memories are woven into prompts 🔹 Testing & Evaluation — 3 dimensions to measure memory quality 🔹 Production Architecture & Privacy — async event-driven design and security safeguards 🔹 The Complete Context Engineering Stack — Sessions, Memory, Production, Privacy Whether you're building AI agents, designing LLM applications, or just want to understand the cutting edge of AI research, this video gives you the complete picture. 📄 Paper: "Context Engineering: Sessions & Memory" (Google, 2025) ⏱️ Timestamps: 00:00 Introduction — What is Context Engineering? 01:00 The 4-Phase Agent Lifecycle 02:00 Sessions as a Workbench 03:00 Long-Context Compaction Strategies 04:00 Memory vs RAG 05:00 Memory Manager Architecture 06:00 Declarative vs Procedural Memory 07:00 Memory Organization Patterns 08:00 Memory Scope & Multimodal Content 09:00 Memory Extraction Methods 10:00 Memory Consolidation & Relevance Decay 11:00 Provenance & Trust Hierarchy 12:00 Memory-as-a-Tool & Retrieval Pipeline 13:00 Inference with Memories 14:00 Testing & Evaluation 15:00 Production Architecture & Privacy 16:00 Summary & Key Takeaways 🔔 Subscribe for more deep dives into cutting-edge AI research! #ContextEngineering #AIAgents #LLM #MachineLearning #ArtificialIntelligence #RAG #MemoryManagement #AgentArchitecture #GoogleAI #DeepLearning #AIResearch #PromptEngineering