У нас вы можете посмотреть бесплатно AI Mastery (#3) Context Management in Claude Code или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Are you building a career in AI or leveraging LLMs in your development workflow? Master the critical skill of context management in Claude Code to get higher quality, more reliable AI responses and future-proof your development expertise. LLMs can get "confused" with too much irrelevant information, leading to degraded performance and unreliable outputs – a concept known as "context rot." This wastes time and resources, hindering your efficiency as an AI developer and impacting your career growth. This video dives deep into essential Claude Code context management commands like `@file`, `compact`, `clear`, `resume`, and the powerful 'rewind' feature. Learn how to meticulously control the information your AI models receive, mimicking the focus needed for human problem-solving. By understanding and applying these techniques, you'll overcome common LLM challenges, streamline your development process, and produce more deterministic, high-quality AI-powered solutions. This is a crucial skill for anyone serious about excelling in the rapidly evolving AI landscape and building a robust AI career. Level up your AI development game! Like this video, subscribe for more practical insights, and share your biggest Claude Code context challenges in the comments below! Timestamps 00:00:00 The #1 Skill for AI Developers: Master LLM Context Engineering 00:05:45 Gain Precision: Control Claude's Focus with @file & Ignore 00:08:45 Optimize Your AI History: Compact & Clear for Efficiency 00:10:45 Never Lose Your Flow: Resume & Rewind AI Conversations 00:13:30 Why Context Engineering Trumps Fine-Tuning for AI Reliability