У нас вы можете посмотреть бесплатно AgenticRAG Tool-Augmented Foundation Models for Zero-Shot Explainable Recommender Systems или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Paper: https://arxiv.org/abs/2510.02668 Title: AgenticRAG: Tool-Augmented Foundation Models for Zero-Shot Explainable Recommender Systems Authors: Bo Ma, Hang Li, ZeHua Hu, XiaoFan Gui, LuYao Liu, Simon Liu Abstract: Foundation models have revolutionized artificial intelligence, yet their application in recommender systems remains limited by reasoning opacity and knowledge constraints. This paper introduces AgenticRAG, a novel framework that combines tool-augmented foundation models with retrieval-augmented generation for zero-shot explainable recommendations. Our approach integrates external tool invocation, knowledge retrieval, and chain-of-thought reasoning to create autonomous recommendation agents capable of transparent decision-making without task-specific training. Experimental results on three real-world datasets demonstrate that AgenticRAG achieves consistent improvements over state-of-the-art baselines, with NDCG@10 improvements of 0.4\% on Amazon Electronics, 0.8\% on MovieLens-1M, and 1.6\% on Yelp datasets. The framework exhibits superior explainability while maintaining computational efficiency comparable to traditional methods. Tags: Machine Learning, Natural Language Processing, Technology, blockchain, robotics, autonomous, transfer learning, transformer, few-shot, zero-shot, gru, recommendation, search, summarization, chatbot, recommender system, agenticrag, tool, augmented, foundation, models, research paper, academic, study, analysis, tutorial, explained, breakdown, paper review, research summary, AI research, scientific paper, methodology, results, findings, innovation, technology, computing, algorithm, model Welcome to the Mayuresh Shilotri's Youtube . Maintained by Mayuresh Shilotri You can follow me at Blog - https://shilotri.com/ LinkedIn - / mayureshshilotri Twitter - / mshilotri Note: I only claim to have read the research paper and created a Video using AI tool. I am not the author. All intellectual heavy lifting was performed by the respective authors. 🙏