У нас вы можете посмотреть бесплатно Hall's Theorem and Condition for Bipartite Matchings | Graph Theory, Hall's Marriage Theorem или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
What are Hall's Theorem and Hall's Condition for bipartite matchings in graph theory? Also sometimes called Hall's marriage theorem, we'll be going it in today's video graph theory lesson! A bipartite graph with partite sets U and W, where U has as many or fewer vertices than W, satisfies Hall's condition if, for every subset S of U, S has as many or fewer vertices than it has neighbors (note that all of S's neighbors are in W, since this is a bipartite graph). Now let G be a bipartite graph with partite sets U and W, where |U| is less than or equal to |W|. Hall's theorem states that G contains a matching that covers U if and only if G satisfies Hall's condition. Lesson on matchings: • Matchings, Perfect Matchings, Maximum... Proof of Hall's theorem: • Proof: Hall's Marriage Theorem for Bi... I hope you find this video helpful, and be sure to ask any questions down in the comments! +WRATH OF MATH+ ◆ Support Wrath of Math on Patreon: / wrathofmathlessons Follow Wrath of Math on... ● Instagram: / wrathofmathedu ● Facebook: / wrathofmath ● Twitter: / wrathofmathedu My Music Channel: / seanemusic