• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Implementing multi head attention with tensors | Avoiding loops to enable LLM scale-up скачать в хорошем качестве

Implementing multi head attention with tensors | Avoiding loops to enable LLM scale-up 4 дня назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Implementing multi head attention with tensors | Avoiding loops to enable LLM scale-up
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Implementing multi head attention with tensors | Avoiding loops to enable LLM scale-up в качестве 4k

У нас вы можете посмотреть бесплатно Implementing multi head attention with tensors | Avoiding loops to enable LLM scale-up или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Implementing multi head attention with tensors | Avoiding loops to enable LLM scale-up в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Implementing multi head attention with tensors | Avoiding loops to enable LLM scale-up

Welcome back to the Transformers for Vision series. In this detailed lecture, we explore one of the most important efficiency techniques used in implementing multi-head attention - **Weight Splitting**. In the previous lecture, we learnt how to implement multi-head attention in a naive way by looping through attention heads and concatenating context vectors. In this lecture, we go a step further and see how large language models like GPT-3 handle dozens of attention heads efficiently using a single matrix multiplication instead of multiple for-loop based operations. We will understand: Why naive multi-head attention does not scale well as the number of heads increases The concept of weight splitting and how it avoids redundant matrix multiplications How to manage dimensionality across batches, tokens, and heads How queries, keys, and values are computed and reshaped into 4D tensors How attention scores, masks, softmax, and dropout are applied efficiently How the final context vectors are constructed using tensor operations without any for-loops By the end of this lecture, you will clearly understand how modern Transformers achieve scalability through tensor-based operations and why weight-splitting is fundamental in building efficient architectures like GPT, BERT, and ViT. If you want to strengthen your understanding of Transformers and Vision models, watch the complete playlist on Transformers for Vision on our channel. --- Access the Pro Version of this course The *Pro Version* includes: Full code walkthroughs and implementation notebooks Assignments with step-by-step guidance Lifetime access to lecture notes Exclusive bonus lectures on Vision Transformers and Generative AI Join Transformers for Vision Pro here: https://vizuara.ai/courses/transforme... --- Watch the complete playlist on Transformers for Vision to master the foundations of attention and modern deep learning architectures.

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5