У нас вы можете посмотреть бесплатно StatQuest: Random Forests Part 1 - Building, Using and Evaluating или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Random Forests make a simple, yet effective, machine learning method. They are made out of decision trees, but don't have the same problems with accuracy. In this video, I walk you through the steps to build, use and evaluate a random forest. NOTE: Random Forests are made from Decision Trees, so if you don't know about those, here's the Quest: • Decision and Classification Trees, Cl... ALSO NOTE: This StatQuest is based on Leo Breiman's (one of the creators of Random Forests) website: https://www.stat.berkeley.edu/~breima... For a complete index of all the StatQuest videos, check out: https://statquest.org/video-index/ If you'd like to support StatQuest, please consider... Patreon: / statquest ...or... YouTube Membership: / @statquest ...buying one of my books, a study guide, a t-shirt or hoodie, or a song from the StatQuest store... https://statquest.org/statquest-store/ ...or just donating to StatQuest! https://www.paypal.me/statquest Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter: / joshuastarmer 0:00 Awesome song and introduction 0:31 Motivation for using Random Forests 1:17 Step 1, create a bootstrapped dataset 2:23 Step 2, create a decision tree a random subset of variables at each step 4:00 Step 3, repeat steps 1 and 2 a bunch of times 4:40 Classifying a new sample with a Random Forest 5:41 Definition of Bagging 6:03 Evaluating a Random Forest 8:34 Optimizing the Random Forest Corrections: 3:18 I should have said the same feature (or variable) can be selected multiple times in a tree. Every time we select a subset of features to choose from, we choose from the full list of features, even if we have already used some of those features. Thus, a single feature can appear multiple times in a tree. 9:28 I say "square" when I meant to say "square root". #statquest #randomforest #ML