У нас вы можете посмотреть бесплатно How We Trained a Robot to Do 50 Household Tasks in Simulation (BEHAVIOR Challenge 1st place) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🏆 BEHAVIOR Challenge (NeurIPS 2025) Winner Deep Dive Recently, me and my teammates Gleb and Akash won 1st place in the BEHAVIOR Challenge organized by Stanford Vision and Learning Lab (NeurIPS 2025). We already open-sourced the full solution: code, technical report, blog post with rollouts, and all pretrained weights. In this video, I go through the solution in more detail. BEHAVIOR Challenge is a large-scale robotics benchmark: you get 50 household tasks in high-quality simulation (OmniGibson + NVIDIA Isaac Sim) and 1,200+ hours of teleoperation data. This is the scale where modern VLA policies start to really benefit from transfer learning and generalization. I’ll explain what the challenge is, what we built (architecture, training, inference), and show a lot of real autonomous rollouts (successes and failures). 🎯 What you’ll learn in this video: ✅ What BEHAVIOR is (robot, simulator, dataset, evaluation) ✅ Why we started from Pi0.5 and what we changed (architecture, training, inference): Task embeddings instead of language prompts A simple deterministic System 2 progress tracker Gripper retry heuristic Correlated noise for flow matching Trainable VLM layer mixing for the action expert attention Inference tricks: soft chunk inpainting + action compression ✅ Results: leaderboard, per-task patterns, and failure analysis 🎯 Chapters: 00:00 Intro 01:12 BEHAVIOR overview 04:00 Dataset + task examples 10:57 Solution overview 15:58 System 2 29:01 Actions correlation and flow matching 45:49 Trainable mixed-layer attention 58:12 Inference optimization 1:04:23 Results and autonomous rollouts 1:25:43 Summary and outro 🔗 Open-Source Solution & Resources: • Code: https://github.com/IliaLarchenko/beha... • Pretrained Weights: https://huggingface.co/IliaLarchenko/... • Technical Report: https://arxiv.org/abs/2512.06951 • Blog Post: https://robot-learning-collective.git... 🔗 Main Challenge Info: • Official Website: https://behavior.stanford.edu/challenge/ • Official Repo: https://github.com/StanfordVL/BEHAVIO... • Teleoperation Hardware: https://behavior-robot-suite.github.io/ 📚 Additional References: • Pi0: https://www.pi.website/blog/pi0 • Pi0.5: https://www.pi.website/blog/pi05 • Real-Time Action Chunking: https://www.pi.website/research/real_... • Dot Policy (action speedup): https://github.com/IliaLarchenko/dot_... • Figure AI: Helix (Sport Mode): https://www.figure.ai/news/helix-logi... • Russ Tedrake talk (timestamp normalization): • Stanford Seminar - Multitask Transfer in T... • Isaac GR00T: https://github.com/NVIDIA/Isaac-GR00T • SmolVLA: https://huggingface.co/blog/smolvla • Attention is All You Need (Transformer): https://arxiv.org/abs/1706.03762 • Mixture of Experts: https://arxiv.org/abs/1701.06538 👥 Team: • Ilia Larchenko: https://x.com/IliaLarchenko • Gleb Zarin: https://x.com/zaringleb • Akash Karnatak: https://x.com/akashkarnatak --- Some footage and images in this video are from or generated by Stanford VL Lab / BEHAVIOR / OmniGibson / NVIDIA Isaac Sim, used for educational purposes. All rights remain with the original creators. 💬 Have questions or suggestions? Drop them in the comments, I read everything! ⭐ Enjoyed the video? Please like & subscribe if you like this content