У нас вы можете посмотреть бесплатно RAPIDS: GPU-Accelerated Data Analytics & Machine Learning или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The RAPIDS suite of software libraries, built on CUDA-X AI, gives you the freedom to execute end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA CUDA primitives for low-level compute optimization, but exposes that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger dataset sizes. This demonstration uses RAPIDS, and OmniSci’s GPU-accelerated analytics platform to quickly visualize and run queries on the 1.1 billion New York City taxi ride dataset. "To learn more about RAPIDS and to try using GPU-accelerated analytics using and open-source version of OmniSci (including sample data), please visit https://developer.nvidia.com/rapids https://rapids.ai/ https://ngc.nvidia.com/catalog/contai..."