• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Jop Briët (CWI): Dual functions not approximable by higher-order characters скачать в хорошем качестве

Jop Briët (CWI): Dual functions not approximable by higher-order characters 4 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Jop Briët (CWI): Dual functions not approximable by higher-order characters
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Jop Briët (CWI): Dual functions not approximable by higher-order characters в качестве 4k

У нас вы можете посмотреть бесплатно Jop Briët (CWI): Dual functions not approximable by higher-order characters или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Jop Briët (CWI): Dual functions not approximable by higher-order characters в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Jop Briët (CWI): Dual functions not approximable by higher-order characters

Dual functions, known in ergodic theory as multiple correlation sequences, are an important but poorly-understood class of functions in additive combinatorics. An example of such a function is one that, given a subset A and element d, counts the number of arithmetic progressions in A with common difference d. To make progress on an equally poorly-understood probabilistic version of Szemerédi's theorem with random common differences, it has been suggested to determine if dual functions can be decomposed in terms of "higher-order characters" (polynomial phases or nilsequences) plus a small error function. Conjectured bounds for Szemerédi's theorem with random differences were motivated by an apparent expectation that the error can always be taken to have small L_inf norm. It turns out that this is too much to hope for. In this talk we discuss counterexamples to such decompositions, ideas of which originate from coding theory. This is based on joint works with Ben Green and Farrokh Labib.

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5