У нас вы можете посмотреть бесплатно Comb Sort Working Animation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
/ @manralai Comb Sort is an improved version of Bubble Sort. Here's how it works: Step 1: Initialise the gap Start with a gap size equal to the length of the array (8 in this case). Step 2: Compare and swap Compare adjacent elements with a gap of 8, then 7, 6, ..., 1. If an element is greater than the next one, swap them. Step 3: Repeat Repeat Step 2 until the gap is 1. ▶️Example: 8 4 1 3 5 2 ➡️Gap 8: Compare 8 and 2 (swap) Result: 2 4 1 3 5 8 ➡️Gap 7: Compare 2 and 5 (no swap) Compare 4 and 3 (swap) Result: 2 3 1 4 5 8 ➡️Gap 6: Compare 2 and 1 (swap) Result: 1 3 2 4 5 8 ➡️Gap 5: Compare 1 and 2 (no swap) Compare 3 and 4 (no swap) Compare 2 and 5 (no swap) Result: 1 2 3 4 5 8 ➡️Gap 4: Compare 1 and 3 (no swap) Compare 2 and 4 (no swap) Result: 1 2 3 4 5 8 ➡️Gap 3: Compare 1 and 2 (no swap) Compare 2 and 3 (no swap) Compare 3 and 4 (no swap) Result: 1 2 3 4 5 8 ➡️Gap 2: Compare 1 and 2 (no swap) Compare 2 and 3 (no swap) Compare 3 and 4 (no swap) Compare 4 and 5 (no swap) Result: 1 2 3 4 5 8 ➡️Gap 1 (final pass): Compare 1 and 2 (no swap) Compare 2 and 3 (no swap) Compare 3 and 4 (no swap) Compare 4 and 5 (no swap) Compare 5 and 8 (no swap) Result: 1 2 3 4 5 8 (sorted!) 🟪Comb Sort has a time complexity of O(n log n) in the average case, making it more efficient than Bubble Sort Comb Sort is an improved version of Bubble Sort, designed to eliminate "turtles" (small values near the end of the list) and "rabbits" (large values near the beginning). It works as follows: 1. Initialize the gap size (interval) to the length of the list (n). 2. Calculate the new gap size by dividing the current gap by 1.3 (a constant factor). 3. Compare adjacent elements separated by the gap size. 4. If they're in the wrong order, swap them. 5. Repeat steps 3-4 until the entire list is traversed. 6. If any swaps occurred, repeat from step 2 until no more swaps are needed. The constant factor 1.3 is used to calculate the new gap size. This value was chosen because: It's between 1 and 2, ensuring the gap decreases slowly. It's an irrational number, helping to avoid resonances (repeated patterns) in the list. Now, let's calculate the new gap size: Gap = 4 / 1.3 ≈ 3.08 So, the new gap size would be approximately 3. The 1.3 factor helps Comb Sort converge faster than Bubble Sort, making it more efficient for larger lists. Do you have any more questions about Comb Sort or algorithms in general?