У нас вы можете посмотреть бесплатно How to Accelerate AI Training With Programmatic Data Labeling: Snorkel Flow Demo или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Predictive models, aligning LLMs, and fine-tune RAG applications all require labeled data. However, enterprise AI initiatives quickly become blocked due to the excessive time and cost needed to label data manually. The solution is programmatic data labeling, which provides enterprises with an efficient way to capture knowledge from SMEs and then use it to automate data labeling at scale. It accelerates AI development time from months to days. In this webinar, Snorkel AI Senior Applied Machine Learning Engineer Nazanin Makkinejad, explains how enterprises can not only accelerate data labeling, but quickly iterate, adapt, and improve label accuracy via AI data development. In addition, she shows the following real-world use cases: Classifying chatbot utterances for a bank Extracting procedures from docs for a pharma company Extracting drugs and adverse events from medical notes See more Snorkel Flow demos here: • Snorkel Flow Demos: See How it Works! Timestamps: 00:00 Introduction 01:36 Motivation for Programmatic Labeling 05:35 Challenges with Manual Labeling 08:34 Introduction to Programmatic Labeling 08:44 Overview of Snorkel's Origins 08:51 Applications of Programmatic Labeling 08:59 Explanation of How Programmatic Labeling Works 12:03 Labeling Functions and Their Creation 14:46 Steps in Programmatic Labeling 17:52 Real-World Impact of Programmatic Labeling 19:18 Demonstration Introduction 20:27 Demo: Classifying Chatbot Utterances 24:12 Demo: Training a Model 28:34 Demo: Creating Labeling Functions 31:29 Demo: Using Embeddings for Labeling Functions 39:31 Demo: Drug and Adverse Event Extraction 44:40 Summary and Conclusion 45:07 Q&A Session #enterpriseai #programmaticlabeling #datacentricai