У нас вы можете посмотреть бесплатно Object Detection Part 5: You Only Look Once (YOLO), YOLOv1 Architecture или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This is the fifth video in the object detection series where we explore the You Only Look Once (YOLO) architecture and what improvements it brings in comparison with the RCNN family of models. In short, as the name suggests, the YOLO model performs object detection in a single step compared to RCNN which performs object detection in two steps. References ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ "You Only Look Once: Unified, Real-Time Object Detection" paper: https://arxiv.org/abs/1506.02640 Related Videos ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ R-CNN, Sliding Window and Selective Search: • Object Detection Part 1: R-CNN, Sliding Wi... Fast R-CNN, Region Projection and Region of Interest (RoI) Pooling Layer: • Object Detection Part 2: Fast R-CNN, Regio... Faster R-CNN, Region Proposal Network and Intersection over Union: • Object Detection Part 3: Faster R-CNN, Reg... Mask RCNN, Mask Prediction Branch and Region of Interest Align (ROIAlign): • Object Detection Part 4: Mask RCNN, Mask P... The Hungarian Matching: • Object Detection Part 6: The Hungarian Mat... Why Neural Networks Can Learn Any Function: • Why Neural Networks Can Learn Any Function Why Deep Neural Networks (DNNs) Underperform Tree-Based Models on Tabular Data: • Why Deep Neural Networks (DNNs) Underperfo... Why Residual Connections (ResNet) Work: • Why Residual Connections (ResNet) Work Contents ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 00:00 - Intro 00:37 - RCNN Issues 01:10 - YOLO Architecture 02:17 - Anchor Matching 03:23 - Inference 03:49 - YOLO Drawbacks 04:30 - Outro Follow Me ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 🐦 Twitter: @datamlistic / datamlistic 📸 Instagram: @datamlistic / datamlistic 📱 TikTok: @datamlistic / datamlistic Channel Support ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ The best way to support the channel is to share the content. ;) If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary) ► Patreon: / datamlistic ► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq ► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281 ► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5 ► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a #yolo #objectdetection #computervision