• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

NJIT Data Science Seminar: Joel Emer скачать в хорошем качестве

NJIT Data Science Seminar: Joel Emer Трансляция закончилась 3 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
NJIT Data Science Seminar: Joel Emer
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: NJIT Data Science Seminar: Joel Emer в качестве 4k

У нас вы можете посмотреть бесплатно NJIT Data Science Seminar: Joel Emer или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон NJIT Data Science Seminar: Joel Emer в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



NJIT Data Science Seminar: Joel Emer

NJIT Institute for Data Science https://datascience.njit.edu/ Exploiting Sparsity in Deep Neural Network Accelerator Hardware Joel Emer, Ph.D. Professor Massachusetts Institute of Technology Recently it has increasingly been observed that exploiting sparsity in hardware for linear algebra computations can result in significant performance improvements. This is because for data that has many zeros compression can reduce both storage space and data movement. In addition, it is possible to take advantage of the simple mathematical equality that anything times zero equals zero because it results in what is commonly referred to as an ineffectual operation. Eliminating spending time do ineffectual operations and the data accesses associated with them can result in a considerable performance and energy improvements over hardware that performs all computations both effectual and ineffectual. One especially popular domain for exploiting sparsity is in deep neural network (DNN) computations, where the operands are often sparse because the input activations have zeros in them introduced by the non-linear RELU operation and the weights may have been explicitly pruned such that many of them are zero. Previously proposed deep neural network accelerators have employed a variety of computational dataflows and techniques to compress data to optimize performance and energy efficiency. In an analogous fashion to our prior work that categorized DNN dataflows into patterns like weight stationary and output stationary, this talk will try to characterize the range of sparse DNN accelerators. Thus, rather than presenting a single specific combination of a dataflow and concrete data representation, I will present a generalized framework for describing dataflows and their manipulation of sparse tensor operands. In this framework, the dataflow and the representation of the operands are expressed independently in order to better facilitate the exploration of the wide design space of sparse DNN accelerators. Therefore, I will begin by presenting a format-agnostic abstraction for sparse tensors, called fibertrees. Using the fibertree abstraction, one can express a wide variety of concrete data representations, each with its own advantages and disadvantages. Furthermore by adding a set of operators for activities, like traversal and merging of tensors, the fibertree notation can be used to express dataflows independent of the concrete data representation used for the tensor operands. Thus, using this common language, I will describe a variety of previously proposed sparse neural network accelerator designs, highlighting the choices they made. Finally, I will present the some work on how this framework can be used as the basis of an analytic framework for evaluating the effectiveness of various sparse optimizations in accelerator designs. For over 40 years, Joel Emer held various research and advanced development positions investigating processor microarchitecture and developing performance modeling and evaluation techniques. He has made architectural contributions to a number of VAX, Alpha and X86 processors and is recognized as one of the developers of the widely employed quantitative approach to processor performance evaluation. He is also well known for his contributions to the advancement of deep learning accelerator design, spatial and parallel architectures, processor reliability analysis, cache organization and simultaneous multithreading. Currently he is a professor at the Massachusetts Institute of Technology and spends part time as a Senior Distinguished Research Scientist in Nvidia's Architecture Research group. Previously, he worked at Intel where he was an Intel Fellow and Director of Microarchitecture Research. Even earlier, he worked at Compaq and Digital Equipment Corporation. He earned a doctorate in electrical engineering from the University of Illinois in 1979. He received a bachelor's degree with highest honors in electrical engineering in 1974, and his master's degree in 1975 -- both from Purdue University. Recognitions of his contributions include an ACM/SIGARCH-IEEE-CS/TCCA Most Influential Paper Award for his work on simultaneous multithreading, and six other papers that were selected as IEEE Micro's Top Picks in Computer Architecture. Among his professional honors, he is a Fellow of both the ACM and IEEE, and a member of the NAE. In 2009 he was recipient of the Eckert-Mauchly award for lifetime contributions in computer architecture. #ML #DeepLearning #Accelerators

Comments
  • From Memory to the Senses: Celebrating a Decade of Discovery Трансляция закончилась 3 года назад
    From Memory to the Senses: Celebrating a Decade of Discovery
    Опубликовано: Трансляция закончилась 3 года назад
  • NJIT Data Science Seminar: Klara Nahrstedt Трансляция закончилась 3 года назад
    NJIT Data Science Seminar: Klara Nahrstedt
    Опубликовано: Трансляция закончилась 3 года назад
  • NJIT Data Science Seminar: Lu Lin Трансляция закончилась 3 года назад
    NJIT Data Science Seminar: Lu Lin
    Опубликовано: Трансляция закончилась 3 года назад
  • Новая страна вступила в войну? / Первый удар нанесён 4 часа назад
    Новая страна вступила в войну? / Первый удар нанесён
    Опубликовано: 4 часа назад
  • 4 Hours Chopin for Studying, Concentration & Relaxation 4 года назад
    4 Hours Chopin for Studying, Concentration & Relaxation
    Опубликовано: 4 года назад
  • Introducing MRI: Spatial Localization and k-space: Review and Q&A (25 of 56) 11 лет назад
    Introducing MRI: Spatial Localization and k-space: Review and Q&A (25 of 56)
    Опубликовано: 11 лет назад
  • Przedsiębiorca miażdży KSEF. Oto dlaczego ten system to problem | prof. SGMK dr Mariusz Miąsko 12 часов назад
    Przedsiębiorca miażdży KSEF. Oto dlaczego ten system to problem | prof. SGMK dr Mariusz Miąsko
    Опубликовано: 12 часов назад
  • Frequency Tables, Graphs, and Distributions 14 лет назад
    Frequency Tables, Graphs, and Distributions
    Опубликовано: 14 лет назад
  • MLFlow Tutorial | ML Ops Tutorial 1 год назад
    MLFlow Tutorial | ML Ops Tutorial
    Опубликовано: 1 год назад
  • Dr. György Buzsáki (NYU) - Keynote Lecture: Brain-inspired Computation: by which Brain Model? 1 год назад
    Dr. György Buzsáki (NYU) - Keynote Lecture: Brain-inspired Computation: by which Brain Model?
    Опубликовано: 1 год назад
  • Stevens Institute of Technology - President's Distinguished Lecture Series: Dr. Darío Gil ’98 1 год назад
    Stevens Institute of Technology - President's Distinguished Lecture Series: Dr. Darío Gil ’98
    Опубликовано: 1 год назад
  • Экспресс-курс RAG для начинающих 4 месяца назад
    Экспресс-курс RAG для начинающих
    Опубликовано: 4 месяца назад
  • Лучший документальный фильм про создание ИИ 4 недели назад
    Лучший документальный фильм про создание ИИ
    Опубликовано: 4 недели назад
  • Climate Capitalists 1 год назад
    Climate Capitalists
    Опубликовано: 1 год назад
  • The Fabric of the Cosmos,  Dr. Brian Greene, Columbia University 7 лет назад
    The Fabric of the Cosmos, Dr. Brian Greene, Columbia University
    Опубликовано: 7 лет назад
  • Ameryka gra brutalnie i zmienia zasady gry wobec Europy  || Tomasz Wróblewski - didaskalia#174 12 часов назад
    Ameryka gra brutalnie i zmienia zasady gry wobec Europy || Tomasz Wróblewski - didaskalia#174
    Опубликовано: 12 часов назад
  • Toward General and Purposeful Reasoning in Real World Beyond Lingual Intelligence 8 месяцев назад
    Toward General and Purposeful Reasoning in Real World Beyond Lingual Intelligence
    Опубликовано: 8 месяцев назад
  • Mahmood Mamdani, 16 лет назад
    Mahmood Mamdani, "State Formation and Conflict"
    Опубликовано: 16 лет назад
  • A Theory of the Mechanics of Information - Christopher Hazard 3 недели назад
    A Theory of the Mechanics of Information - Christopher Hazard
    Опубликовано: 3 недели назад
  • Robert Hodrick: The Carry Trade 12 лет назад
    Robert Hodrick: The Carry Trade
    Опубликовано: 12 лет назад

Контактный email для правообладателей: u2beadvert@gmail.com © 2017 - 2026

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5