У нас вы можете посмотреть бесплатно Calculus 1 — 18.4: Combining First and Second Derivative Tests или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Your curve sketches have the right peaks and valleys but look like stick figures? Learn how combining the first and second derivative tests on a single number line gives you everything you need to sketch smooth, accurate curves — no calculator required. This video walks through a complete curve-sketching example for f(x) = x³ − 3x² − 24x + 28, showing how to merge increasing/decreasing information with concavity data to produce four distinct curve shapes. You'll build a sketch segment by segment, left to right, and see it match the computer-generated graph perfectly. Key concepts covered: • First derivative test review: sign of f'(x) determines increasing vs. decreasing intervals and locates relative extrema • Second derivative test review: sign of f''(x) determines concavity (concave up vs. concave down) and locates inflection points • Merging both derivative sign charts into a single combined number line • The four shape combinations: rising arch, rising scoop, falling arch, falling scoop • Why inflection points do NOT require f'(x) = 0 — the function can be increasing or decreasing through an inflection point • Step-by-step progressive curve sketching using only three strategic points and derivative signs • Practice challenge: narrating a new combined number line left to right ORIGINAL SOURCE This video is based on standard topics in single-variable calculus covering curve sketching with first and second derivative analysis.