У нас вы можете посмотреть бесплатно Robert Fathauer - Tessellations: Mathematics, Art, and Recreation - CoM Apr 2021 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A tessellation, also known as a tiling, is a collection of shapes (tiles) that fit together without gaps or overlaps. Tessellations are a topic of mathematics research as well as having many practical applications, the most obvious being the tiling of floors and other surfaces. There are numerous examples of tessellations in nature, and they’ve been used in cultures around the world for decorative purposes. In addition, tessellations often appear in games and puzzles, and they lend themselves to a variety of recreational mathematics explorations. This talk will provide a brief introduction to the topic, focusing on some of the author’s favorite recreational mathematics examples Robert Fathauer has had a life-long interest in art, but studied Physics and Mathematics in college, going on to earn a Ph.D. from Cornell University in Electrical Engineering. For several years he was a researcher at the Jet Propulsion Laboratory in Pasadena, California. Long a fan of M.C. Escher, he began designing his own tessellations with lifelike motifs in the late 1980’s. In 1993, he founded a business, Tessellations, to produce puzzles based on his designs. Over time, Tessellations has grown to include mathematics manipulatives, polyhedral dice, and books. Dr. Fathauer’s mathematical art has always been coupled with recreational math explorations. These include Escheresque tessellations, fractal tilings, and iterated knots. After many years of creating two-dimensional art, he has recently been building ceramic sculptures inspired by both mathematics and biological forms. Another interest of his is photographing mathematics in natural and synthetic objects, particularly tessellations. In addition to creating mathematical art, he’s strongly committed to promoting it through group exhibitions at both the Bridges Conference and the Joint Mathematics Meetings. His book entitled “Tessellations: Mathematics, Art, and Recreation” was recently published by CRC Press.