У нас вы можете посмотреть бесплатно Relativistic Rotation 2: Rotating Geometry или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Continuation of the previous video where we studied the famous Ehrenfest paradox. This time we study the geometry in more detail, more rigour, and more mathematics. We reformulate the Einstein synchronization process to better serve our needs of measuring distances in a non inertial frame. We find the limitations of the Radar synchronization in general frame. But when, finally, we apply the radar principle in infinitesimal scale to reach the famous Landau-Lifshitz metric. This metric is clearly indicative of a hyberbolic non euclidean geometry. Special thanks again to Saku Taittonen for narrating this video. Some references: Øyvind Grøn's Space Geometry in Rotating Reference Frames: A Historical Appraisal: https://www.researchgate.net/publicat... On the Light cone construction: Märtzke Wheeler coordinates for accelerated observers in special relaticity, by M. Pauri and M. Vallisneri Measuring distances in General Relativity + Landau Lifshitz metric: Classical Theory of Fields, Chapter 10: $ 84, $ 89, by Landau Lifshitz Time Stamps: 0:00 intro 0:50 How to measure Distances 1:17 Einstein Syncronization 4:30 Light Cone construction 7:30 Märtzke Wheeler coordinates 9:56 Radar synchronization does not work globally 12:05 Localize the Radar principle 16:44 Practice with Minkowski metric 19:45 Born metric 22:05 Derivation of theLandau Lifshitz metric 25:10 Landau Lifshitz metric 26:30 Geodesics 28:40 Impossibility of synchronization 30:30 Spatial space as equivalence classes 32:38 Living in the rotating frame, a peak