У нас вы можете посмотреть бесплатно Build From Scratch Series, Diffusion Image Model Explained Simply или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
What if the secret to AI-generated art isn't painting at all — but learning to clean up static like a master restorer who's never seen the original? In this episode, we rip open the hood of diffusion models (the tech behind Stable Diffusion & DALL·E) and show you exactly how AI "un-draws" noise into stunning images. 🎯 KEY TOPICS COVERED: • Why AI image generation is nothing like how LLMs work — and why that matters • The forward process: how you systematically destroy an image with Gaussian noise • The reverse process: how a neural network learns to predict and subtract noise (not reconstruct the image!) • The U-Net architecture — skip connections, bottlenecks, and the "bifocals" analogy • Latent space & VAEs — why Stable Diffusion is called "Stable" Diffusion • CLIP & cross-attention — how a text prompt actually steers the denoising process • Classifier-Free Guidance (CFG) — the secret dial that controls prompt adherence (and what happens when you crank it too high 🔥) This is Part 3 of our "Building From Scratch" series, where we break down complex AI systems into concepts anyone can understand — no PhD required. 💡 Whether you're an AI enthusiast, a prompt engineer, or just curious about how Midjourney conjures cyberpunk raccoons from thin air, this episode will change how you think about generative AI forever. 👉 LIKE & SUBSCRIBE for more deep dives into how AI actually works, explained simply. 🔔 Hit the bell so you never miss an episode! 💬 Drop a comment: What AI concept should we build from scratch next? #DiffusionModels #StableDiffusion #AIArt #MachineLearning #GenerativeAI #AIExplained #DeepLearning #DALLE 📑 Chapters: 0:00 AI Art Isn't Painting — It's Cleaning Static 1:47 'Explained Simply' Is Dangerous Territory 2:18 LLMs vs. Image Models — Totally Different Beasts 3:58 The Art Restorer Analogy (With a Twist) 5:14 The Data Manifold — Why Random Isn't Random 6:54 Forward Diffusion — Ruining a Cat Photo on Purpose 7:39 The Gaussian Shortcut (Reparameterization Trick) 9:04 Reverse Process — The ACTUAL AI Part 10:03 🤯 Predict the NOISE, Not the Image! 12:34 The U-Net — A Brain Shaped Like a U 15:23 Time Embeddings — What Step Are We On? 16:31 Latent Space & VAE — The 'Stable' in Stable Diffusion 19:50 CLIP & Cross-Attention — Text Meets Image 22:26 Classifier-Free Guidance — The Secret Dial 24:48 The Full Pipeline — Putting It All Together 27:18 Big Takeaways & What's Next Tags: diffusion models explained, how stable diffusion works, AI image generation, diffusion models from scratch, stable diffusion tutorial, DALL-E explained, U-Net architecture, VAE latent space, CLIP text to image, classifier free guidance, how AI generates images, generative AI explained, machine learning for beginners, AI art explained, denoising diffusion, the bearded AI guy, building from scratch series, gaussian noise AI, cross attention mechanism, AI explained simply