• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Foundations of causal inference and its impacts on machine learning webinar скачать в хорошем качестве

Foundations of causal inference and its impacts on machine learning webinar 4 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Foundations of causal inference and its impacts on machine learning webinar
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Foundations of causal inference and its impacts on machine learning webinar в качестве 4k

У нас вы можете посмотреть бесплатно Foundations of causal inference and its impacts on machine learning webinar или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Foundations of causal inference and its impacts on machine learning webinar в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Foundations of causal inference and its impacts on machine learning webinar

Many key data science tasks are about decision-making. They require understanding the causes of an event and how to take action to improve future outcomes. Machine learning (ML) models rely on correlational patterns to predict the answer to a question but often fail at these decision-making tasks, as the very decisions and actions they drive change the patterns they rely on. Causal inference methods, in contrast, are designed to rely on patterns generated by stable and robust causal mechanisms, even as decisions and actions change. With insights gained from causal methods, the new, growing field of causal machine learning promises to address fundamental ML challenges in generalizability, interpretability, bias, and privacy. In this webinar, join Microsoft researchers Amit Sharma and Emre Kıcıman to learn about the fundamentals of causal inference. You will learn how a target question of cause and effect can be captured in a formal graphical model and answered systematically using available data. The researchers will introduce a four-step causal modeling framework for analyzing decision-making tasks and walk-through code examples using the DoWhy Python library that implements the framework. You will also discover how causal methods can be useful to improve ML models in terms of their generalizability, explainability, fairness, and robustness. Together, you’ll explore: ■ Why causal reasoning is necessary for decision-making ■ The difference between a prediction and a decision-making task ■ How the DoWhy library can help you conduct a robust causal inference analysis by translating domain knowledge to a causal graph and validating the graph using available data ■ The connections between causal inference and the challenges of modern ML models Amit Sharma is a Senior Researcher at Microsoft Research India. His work bridges causal inference techniques with data mining and machine learning, with the goal of making machine learning models generalize better, be explainable and avoid hidden biases. To this end, Amit has co-led the development of the open-source Microsoft DoWhy library for causal inference and DiCE library for counterfactual explanations. Emre Kiciman is a Senior Principal Researcher at Microsoft Research at Redmond. His research is motivated by decision-making tasks in a variety of societally critical domains and includes research on causal machine learning and the security of AI systems. Emre is a co-author of the DoWhy library for causal inference. 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲 𝗹𝗶𝘀𝘁: ■ Foundations of causal inference and its impacts on machine learning (presentation slides) ■ DoWhy: Causal Reasoning for Designing and Evaluating Interventions (project page) https://www.microsoft.com/en-us/resea... ■ Causal Reasoning: Fundamentals and Machine Learning Applications (book excerpt): http://causalinference.gitlab.io/ ■ Causality and Machine Learning at Microsoft (publications): https://www.microsoft.com/en-us/resea... ■ DoWhy: A library for causal inference (GitHub) https://github.com/Microsoft/dowhy ■ DoWhy: An end-to-end library for causal inference (paper): https://arxiv.org/abs/2011.04216 ■ DoWhy – A library for causal inference (blog) - https://www.microsoft.com/en-us/resea... *This on-demand webinar features a previously recorded Q&A session and open captioning. This webinar originally aired on December 3, 2020 Explore more Microsoft Research webinars: https://aka.ms/msrwebinars

Comments
  • Avatars: Finding a sense of self and others in the virtual world 4 года назад
    Avatars: Finding a sense of self and others in the virtual world
    Опубликовано: 4 года назад
  • 14. Causal Inference, Part 1 5 лет назад
    14. Causal Inference, Part 1
    Опубликовано: 5 лет назад
  • Create human-centered AI with the Human-AI eXperience (HAX) Toolkit webinar 4 года назад
    Create human-centered AI with the Human-AI eXperience (HAX) Toolkit webinar
    Опубликовано: 4 года назад
  • Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019 5 лет назад
    Michael Johns: Propensity Score Matching: A Non-experimental Approach to Causal... | PyData NYC 2019
    Опубликовано: 5 лет назад
  • Transparency and Intelligibility Throughout the Machine Learning Life Cycle 5 лет назад
    Transparency and Intelligibility Throughout the Machine Learning Life Cycle
    Опубликовано: 5 лет назад
  • Причинно-следственные выводы в Python: от теории к практике 2 года назад
    Причинно-следственные выводы в Python: от теории к практике
    Опубликовано: 2 года назад
  • LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры 1 год назад
    LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры
    Опубликовано: 1 год назад
  • Panel: Causal ML at Microsoft 3 года назад
    Panel: Causal ML at Microsoft
    Опубликовано: 3 года назад
  • Цепи Маркова — математика предсказаний [Veritasium] 1 месяц назад
    Цепи Маркова — математика предсказаний [Veritasium]
    Опубликовано: 1 месяц назад
  • Но что такое нейронная сеть? | Глава 1. Глубокое обучение 8 лет назад
    Но что такое нейронная сеть? | Глава 1. Глубокое обучение
    Опубликовано: 8 лет назад
  • Causal Reinforcement Learning -- Part 1/2 (ICML tutorial) 5 лет назад
    Causal Reinforcement Learning -- Part 1/2 (ICML tutorial)
    Опубликовано: 5 лет назад
  • Full Tutorial: Causal Machine Learning in Python (Feat. Uber's CausalML) 1 год назад
    Full Tutorial: Causal Machine Learning in Python (Feat. Uber's CausalML)
    Опубликовано: 1 год назад
  • Philipp Bach and Sven Klaassen: Tutorial on DoubleML for double machine learning in Python and R 2 года назад
    Philipp Bach and Sven Klaassen: Tutorial on DoubleML for double machine learning in Python and R
    Опубликовано: 2 года назад
  • Judea Pearl -- The Foundations of Causal Inference  [The Book of WHY] 6 лет назад
    Judea Pearl -- The Foundations of Causal Inference [The Book of WHY]
    Опубликовано: 6 лет назад
  • Susan Athey: Machine Learning and Causal Inference for Personalization 4 года назад
    Susan Athey: Machine Learning and Causal Inference for Personalization
    Опубликовано: 4 года назад
  • Research talk: Challenges and opportunities in causal machine learning 3 года назад
    Research talk: Challenges and opportunities in causal machine learning
    Опубликовано: 3 года назад
  • Квантование против обрезки против дистилляции: оптимизация нейронных сетей для вывода 2 года назад
    Квантование против обрезки против дистилляции: оптимизация нейронных сетей для вывода
    Опубликовано: 2 года назад
  • An introduction to Causal Inference with Python – making accurate estimates of cause and effect from 2 года назад
    An introduction to Causal Inference with Python – making accurate estimates of cause and effect from
    Опубликовано: 2 года назад
  • Metaculus Presents — Causal Inference and LLMs: A New Frontier 2 года назад
    Metaculus Presents — Causal Inference and LLMs: A New Frontier
    Опубликовано: 2 года назад
  • Judea Pearl: 6 лет назад
    Judea Pearl: "Interpretability and explainability from a causal lens"
    Опубликовано: 6 лет назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5