У нас вы можете посмотреть бесплатно Forecasting Methods: 'Naive Method' and 'Simple Moving Averages Method' или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
• Naive Method vs Moving Averages: Which Forecasting Technique Works Best? • Understanding Forecasting: Naive vs Moving Average Methods | Business Analytics 📝 PODCAST DESCRIPTION Welcome to this comprehensive lesson on forecasting methods! In this video, we explore two fundamental forecasting techniques used in business analytics and statistics: the Naive Method and the Moving Averages Method. 🎯 What You'll Learn: • The Naive Forecasting Method: The simplest approach where tomorrow's forecast equals today's value • The Moving Averages Method: A smoothing technique that averages past observations to predict future values • When to use each method effectively • Real-world applications in business decision-making • The trade-offs between simplicity and accuracy 📊 Key Concepts Covered: ✓ Naive Method Formula: Tomorrow = Today ✓ Moving Averages Formula: Forecast = (P₁ + P₂ + ... + Pₙ)/n ✓ Visual comparison of both methods ✓ Understanding forecast accuracy ✓ Practical applications in business and economics 🎓 Perfect For: • Business Analytics students • Statistics learners • MBA candidates • Data analysts • Business professionals • Anyone interested in forecasting and predictive modeling 💡 Why This Matters: Understanding when to use simple vs. complex forecasting methods is crucial for making accurate business predictions. Sometimes, the 'naive method' can outperform more sophisticated techniques, especially with random or volatile data patterns. 📚 Course Context: This lesson is part of Applied Statistics for Business Decision Making. 👨🏫 About the Instructor: Professor Sanjeev K Pathak brings 36+ years of industry experience in infrastructure management and currently serves as Adjunct Faculty at Mercy University's School of Business, NY. 🔔 Don't forget to LIKE, SUBSCRIBE, and hit the notification bell for more business analytics content! 💬 Have questions? Drop them in the comments below! 🏷️ HASHTAGS #Forecasting #BusinessAnalytics #Statistics #DataScience #DataAnalytics #MBA #BusinessStatistics #PredictiveAnalytics #TimeSeriesAnalysis #MachineLearning#AppliedStatistics #ManagerialAnalytics #BusinessDecisionMaking #StatisticsForBusiness #QuantitativeAnalysis #BusinessForecasting #NaiveMethod #MovingAverage #ForecastingMethods #NaiveForecasting #MovingAverages #ForecastAccuracy #StatisticalForecasting #TimeSeriesForecasting Educational #LearnStatistics #StatisticsLecture #OnlineLearning #BusinessEducation #AnalyticsTraining #StatisticsTutorial #DataAnalysisTutorial #BusinessSchool #MBAStudent Professional #DataDriven #BusinessIntelligence #DecisionScience #OperationsResearch #SupplyChain #DemandForecasting #SalesForecasting #InventoryManagement 💡 ENGAGEMENT TIPS Pinned Comment Suggestion: "📚 Which forecasting method do you use most in your work? Let me know in the comments! And if you found this helpful, check out my other analytics videos in the playlist!" Community Post Ideas: • Poll: "Which forecasting method do you prefer? 🤔 Naive Method or Moving Averages?" • Quick tips on when each method works best • Real-world case study teasers