У нас вы можете посмотреть бесплатно Learning Plastic Matching of Robot Dynamics in Closed-loop Central Pattern Generators или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Ruppert, F., & Badri-Spröwitz, A. (2022). Learning Plastic Matching of Robot Dynamics in Closed-loop Central Pattern Generators. Nature Machine Intelligence. https://www.nature.com/articles/s4225... Animals show agile locomotion performance with reduced control effort and energy efficiency by leveraging compliance in their muscles and tendons. However, it remains a question how biological locomotion controllers learn to leverage the intelligence embodied in their leg mechanics. Here we present a framework to match control patterns and mechanics based on the concept of short-term elasticity and long-term plasticity. Inspired by animals we design robot Morti with passive elastic legs. The quadruped is controlled by a bioinspired closed-loop central pattern generator that is designed to elastically mitigate short term perturbations using sparse contact feedback. By minimizing the amount of corrective feedback in the long term, the robot learns to match the controller to its mechanics and learns to walk within one hour. By leveraging the advantages of its mechanics, the robot improves its energy efficiency by 42% without explicit minimization in the cost function.