• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Microfluidic platform using focused ultrasound passing through hydrophobic meshes скачать в хорошем качестве

Microfluidic platform using focused ultrasound passing through hydrophobic meshes 2 года назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Microfluidic platform using focused ultrasound passing through hydrophobic meshes
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Microfluidic platform using focused ultrasound passing through hydrophobic meshes в качестве 4k

У нас вы можете посмотреть бесплатно Microfluidic platform using focused ultrasound passing through hydrophobic meshes или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Microfluidic platform using focused ultrasound passing through hydrophobic meshes в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Microfluidic platform using focused ultrasound passing through hydrophobic meshes

Microfluidic platform using focused ultrasound passing through hydrophobic meshes with jump availability(2023) 空中超音波で液滴をジャンプさせるマイクロ流体操作基盤を開発。 ▼Project Page https://digitalnature.slis.tsukuba.ac... ▼Publication https://doi.org/10.1093/pnasnexus/pga... ▼Press Release https://www.tsukuba.ac.jp/journal/tec... Applications in chemistry, biology, medicine, and engineering require the large-scale manipulation of a wide range of chemicals, samples, and specimens. To achieve maximum efficiency, parallel control of microlitre droplets using automated techniques is essential. Electrowetting-on-dielectric (EWOD), which manipulates droplets using the imbalance of wetting on a substrate, is the most widely employed method. However, EWOD is limited in its capability to make droplets detach from the substrate (jumping), which hinders throughput and device integration. Here, we propose a novel microfluidic system based on focused ultrasound passing through a hydrophobic mesh with droplets resting on top. A phased array dynamically creates foci to manipulate droplets of up to 300 µL. This platform offers a jump height of up to 10 cm, a 27-fold improvement over conventional EWOD systems. In addition, droplets can be merged or split by pushing them against a hydrophobic knife. We demonstrate Suzuki-Miyaura cross-coupling using our platform, showing its potential for a wide range of chemical experiments. Biofouling in our system was lower than in conventional EWOD, demonstrating its high suitability for biological experiments. Focused ultrasound allows the manipulation of both solid and liquid targets. Our platform provides a foundation for the advancement of micro-robotics, additive manufacturing, and laboratory automation. 科学実験の自動化・高速化において、ピコリットル〜マイクロリットル程度の少量の液体(液滴)を並列的に扱う必要が生じる場合があります。また、液滴を空間的に離れた基盤装置・容器へ移動させる際には、液滴をジャンプさせる必要がありますが、平面上で液滴を操作するデジタルマイクロ流体技術では、最大で5 mm程度の高さに限られていました。 本研究では、超音波の遠隔力(音響放射力)を利用して液滴を操作する新たなマイクロ流体基盤を開発しました。撥水加工を施したメッシュを用いると、音波を透過させつつ、液滴を支えることができ、空中でも音圧が高いところに液滴が引き寄せられる性質があることを見いだし、超音波ビームによってメッシュ上の液滴の操作が可能になりました。 これにより、液滴のジャンプの高さは最高で128 mmにまで達します。ジャンプする方向も制御できるため、液滴を隣の装置や別の段に移動させることも可能だと考えられます。また、デジタルマイクロ流体基盤に必要な基本的な機能として、複数の液滴の水平移動、合体、分割を実現しました。さらに、科学実験への適用例として、この基盤上で鈴木・宮浦クロスカップリング反応を実施するとともに、生物実験にも適していることを示しました。本研究成果により、立体ディスプレイや実験自動システムなどの開発が期待されます。 Yusuke Koroyasu, Thanh-Vinh Nguyen, Shun Sasaguri, Asier Marzo, Iñigo Ezcurdia, Yuuya Nagata, Tatsuya Yamamoto, Nobuhiko Nomura, Takayuki Hoshi, Yoichi Ochiai, Tatsuki Fushimi 頃安祐輔, グェン タン・ヴィン, 笹栗峻, Asier Marzo, Iñigo Ezcurdia, 長田裕也, 山本達也, 野村暢彦, 星貴之, 落合陽一, 伏見龍樹

Comments

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5