У нас вы можете посмотреть бесплатно AdaBoost, Clearly Explained или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
AdaBoost is one of those machine learning methods that seems so much more confusing than it really is. It's really just a simple twist on decision trees and random forests. NOTE: This video assumes you already know about Decision Trees... • Decision and Classification Trees, Clearly... ...and Random Forests.... • StatQuest: Random Forests Part 1 - Buildin... Sources: The original AdaBoost paper by Robert E. Schapire and Yoav Freund https://www.sciencedirect.com/science... And a follow up by co-created Schapire: http://rob.schapire.net/papers/explai... The idea of using the weights to resample the original dataset comes from Boosting Foundations and Algorithms, by Robert E. Schapire and Yoav Freund https://mitpress.mit.edu/books/boosting Lastly, Chris McCormick's tutorial was super helpful: http://mccormickml.com/2013/12/13/ada... For a complete index of all the StatQuest videos, check out: https://statquest.org/video-index/ If you'd like to support StatQuest, please consider... Patreon: / statquest ...or... YouTube Membership: / @statquest ...buying one of my books, a study guide, a t-shirt or hoodie, or a song from the StatQuest store... https://statquest.org/statquest-store/ ...or just donating to StatQuest! https://www.paypal.me/statquest Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter: / joshuastarmer 0:00 Awesome song and introduction 0:56 The three main ideas behind AdaBoost 3:30 Review of the three main ideas 3:58 Building a stump with the GINI index 6:27 Determining the Amount of Say for a stump 10:45 Updating sample weights 14:47 Normalizing the sample weights 15:32 Using the normalized weights to make the second stump 19:06 Using stumps to make classifications 19:51 Review of the three main ideas behind AdaBoost Correction: 10:18. The Amount of Say for Chest Pain = (1/2)*log((1-(3/8))/(3/8)) = 1/2*log(5/8/3/8) = 1/2*log(5/3) = 0.25, not 0.42. #statquest #adaboost