У нас вы можете посмотреть бесплатно Benchmark and Critical Evaluation for ML Force Fields with Molecular Simulations | Xiang Fu или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
If you enjoyed this talk, consider joining the Molecular Modeling and Drug Discovery (M2D2) talks live: https://m2d2.io/talks/m2d2/about/ Also consider joining the M2D2 Slack: https://m2d2group.slack.com/join/shar... Title: Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations Abstract: Molecular dynamics (MD) simulation techniques are widely used for various natural science applications. Increasingly, machine learning (ML) force field (FF) models begin to replace ab-initio simulations by predicting forces directly from atomic structures. Despite significant progress in this area, such techniques are primarily benchmarked by their force/energy prediction errors, even though the practical use case would be to produce realistic MD trajectories. We aim to fill this gap by introducing a novel benchmark suite for ML MD simulation. We curate representative MD systems, including water, organic molecules, peptide, and materials, and design evaluation metrics corresponding to the scientific objectives of respective systems. We benchmark a collection of state-of-the-art (SOTA) ML FF models and illustrate, in particular, how the commonly benchmarked force accuracy is not well aligned with relevant simulation metrics. We demonstrate when and how selected SOTA methods fail, along with offering directions for further improvement. Specifically, we identify stability as a key metric for ML models to improve. Our benchmark suite comes with a comprehensive open-source codebase for training and simulation with ML FFs to facilitate further work. Speaker: Xiang Fu - / xiangfu_ml Twitter Prudencio: / tossouprudencio Twitter Therence: / therence_mtl Twitter Jonny: / hsu_jonny Twitter Valence Discovery: / valence_ai ~ Chapters: 00:00 - Intro 01:45 - Molecular Dynamics Simulations 08:41 - ML Force Fields 18:11 - Simulation with Force Fields 26:02 - Force/energy Prediction Error 27:48 - Considerations in MD Simulations 30:10 - Scientifically Motivated Metrics 33:28 - Can SOTA ML Force Fields Simulate Various MD Systems? Key Results 48:49 - Takeaways 49:56 - Beyond Force Fields: A Spectrum of MD Simulation Problems 53:36 - Q+A