У нас вы можете посмотреть бесплатно Webinar: Robust control strategies for musculoskeletal models using deep reinforcement learning или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Predicting how the human motor control system adapts to new conditions during gait is a grand challenge in biomechanics. Computational models that emulate human motor control could assist in many applications, such as improving surgical planning for gait pathologies and designing devices to restore mobility for lower-limb amputees. Deep reinforcement learning is a promising approach for modeling motor control and its adaptation to new conditions, but it has not been widely explored in biomechanics research. In this webinar, Lukasz Kidzinski from Stanford University provides an introduction to reinforcement learning and highlights its use for developing control strategies for biomechanical applications. A copy of the webinar slides are available for download at http://opensim.stanford.edu/downloads.... The osim-rl environment for easily applying reinforcement learning to musculoskeletal models can be accessed at http://osim-rl.stanford.edu/. To learn more about the “AI for Prosthetics” challenge mentioned in the webinar, visit https://www.crowdai.org/challenges/ni....