У нас вы можете посмотреть бесплатно Chroma | Context Engineering Episode 3 - Lance Martin - LangChain или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Chroma CEO Jeff Huber sits down with Lance Martin to discuss the current state of agents and more. Find Lance on X, https://x.com/RLanceMartin, and his website, https://rlancemartin.github.io/ 0:00 Introduction & Welcome 0:09 Context Engineering: What It Is and Why It Matters 2:05 Context Rot and Performance Degradation 3:31 Year in Review: 2025 AI Trends 4:28 Giving Agents a Computer (File System & Shell) 5:00 Model Context Protocol (MCP) and Tool Bloat 6:07 Multi-Tier Action Space Architecture 8:24 Tool Search and Progressive Disclosure 10:33 Agent Harness Structure & Deep Agents 12:17 Skills and Standard Operating Procedures (SOPs) 14:13 Context Offloading Techniques 15:49 Plan Offloading & The Ralph Wiggum Loop 18:00 Context Caching for Cost & Speed 18:27 Sub-agents and Context Isolation 21:16 Summary: Key Context Engineering Principles 22:00 Evolving Context & Continual Learning 25:02 Claude Diary: Reflecting on Sessions 26:06 Skill Learning from Agent Trajectories 27:00 Memory Management in Token Space vs Weights 28:35 RLMs: Reason Language Models & Learned Context Management 31:30 What Can Be Absorbed Into Models (The Classifier Test) 35:30 Memory: Writing vs Retrieval Challenges 40:00 File Systems as Agent Primitives 42:46 Limitations of File Systems for Large Codebases 45:02 Multi-Agent Collaboration & Concurrency Challenges 49:35 Layers of Context: Session, Agent, Organizational, Global 52:27 File Systems vs Databases: A Hot Take 55:51 Sandboxing and Agent Infrastructure 58:42 What's Most Exciting: Memory, Personal Agents & Bioscience 2:02:18 Wrap Up — Chroma is the open-source AI application database. Batteries included. Embeddings, vector search, document storage, full-text search, metadata filtering, and multi-modal. All in one place. Retrieval that just works. As it should be. Try it today: https://trychroma.com/cloud