У нас вы можете посмотреть бесплатно Superatoms Explained: When Clusters Behave Like Elements или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Superatoms, metallic nanoclusters, and quantum shell structure — this video explores how groups of atoms can behave as single “super” elements with their own periodic properties. The Superatom Effects in Metallic Nanoclusters phenomenon reveals how clusters of just a few dozen metal atoms mimic the electronic structure of noble gases, alkali metals, or halogens. These superatoms redefine our understanding of the periodic table at the nanoscale, where quantum mechanics takes over chemical identity. Nanoclusters, quantum shells, and delocalized electrons — discover how collective electron behavior within small metallic clusters creates stability patterns similar to atomic closed shells. This video explains how jellium models, density functional theory, and photoelectron spectroscopy unveil superatomic shells and “magic numbers” of atoms corresponding to enhanced stability. From gold nanoclusters (Auₙ) to aluminum and sodium clusters, scientists now design artificial atoms with tunable optical, catalytic, and magnetic properties. The episode explores how ligand protection, charge state control, and geometric symmetry influence superatomic behavior. These structures bridge the worlds of chemistry, solid-state physics, and materials science, enabling new paradigms in quantum materials and nanocatalysis. Could superatoms form the building blocks of a new periodic table — one based not on protons and neutrons, but on electron shells of entire clusters? From theory to application, the video traces how superatom effects underpin molecular electronics, plasmonic nanoparticles, and quantum dots, linking fundamental physics with the next generation of functional materials. 🧪 Core Concepts Explored 🔹 Superatoms — Clusters of atoms behaving as single “artificial elements” 🔹 Quantum Shells — Electronic structure analogous to atomic orbitals 🔹 Jellium Model — Describing delocalized electrons in metallic clusters 🔹 Magic Numbers — Stable cluster sizes with filled electron shells 🔹 Metallic Bonding — Quantum coherence across atomic cores 🔹 Photoelectron Spectroscopy — Probing superatomic electronic levels 🔹 Ligand Protection — Chemical stabilization of reactive nanoclusters 🔹 Density Functional Theory — Modeling superatomic orbitals and shell filling 🔹 Plasmonic Effects — Collective oscillations of electrons in clusters 🔹 Quantum Materials — Tailoring properties through cluster design 🔍 Key Themes in This Video 1️⃣ The Birth of the Superatom — How clusters mimic elemental behavior. 2️⃣ Magic Numbers and Quantum Shells — Why some cluster sizes are uniquely stable. 3️⃣ Theoretical Models — Jellium and DFT as tools for superatomic analysis. 4️⃣ Chemical vs Physical Identity — What makes an atom “super.” 5️⃣ Applications — Catalysis, electronics, and quantum materials. 6️⃣ The Future of Superatomic Science — A periodic table beyond atoms. 📌 Timestamps 00:00 — What Is a Superatom? 01:40 — Quantum Shells and Magic Numbers 03:15 — The Jellium Model Explained 05:00 — Experimental Evidence for Superatoms 07:10 — Stability and Ligand Protection 09:20 — Superatoms in Catalysis and Electronics 11:30 — Building Quantum Materials with Clusters 13:52 — The Future of the Superatomic Periodic Table #Superatoms #Nanoclusters #QuantumChemistry #Nanoscience #MetallicClusters #QuantumMaterials #atomicphysics Explore the fascinating world where tiny "metal cluster" behave like giant atoms, a captivating concept in "nanoscience". This video dives into the captivating "chemistry" and "quantum physics" behind these structures, focusing on the "atomic theory" and the significance of "magic number" in determining their unique properties, and the "quantum" states within.