У нас вы можете посмотреть бесплатно Thiago Bergamaschi - A Structural Theory of Quantum Metastability: Markov Properties and Area Laws или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Recorded 15 January 2026. Thiago Bergamaschi of the University of California, Berkeley presents "A Structural Theory of Quantum Metastability: Markov Properties and Area Laws" at IPAM's New Frontiers in Quantum Algorithms for Open Quantum Systems Workshop. Abstract: Statistical mechanics assumes that a quantum many-body system at low temperature can be effectively described by its Gibbs state. However, many complex quantum systems exist only as metastable states of dissipative open system dynamics, which appear stable and robust yet deviate substantially from true thermal equilibrium. In this work, we model metastable states as approximate stationary states of a quasi-local, (KMS)-detailed-balanced master equation representing Markovian system-bath interaction, and unveil a universal structural theory: all metastable states satisfy an area law of mutual information and a Markov property. The more metastable the states are, the larger the regions to which these structural results apply. Therefore, the hallmark correlation structure and noise resilience of Gibbs states are not exclusive to true equilibrium but emerge dynamically. Behind our structural results lies a systematic framework encompassing sharp equivalences between local minima of free energy, a non-commutative Fisher information, and approximate detailed balance conditions. Our results build towards a comprehensive theory of thermal metastability and, in turn, formulate a well-defined, feasible, and repeatable target for quantum thermal simulation. Based on joint work with Chi-Fang Chen and Umesh Vazirani, arxiv:2510.08538. Learn more online at: https://www.ipam.ucla.edu/programs/wo...