У нас вы можете посмотреть бесплатно Google Dev Ops Engineer Intermediate - Compute или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Ready to level up from "making it work" to "making it scale"? This episode is designed for intermediate DevOps engineers who need to master the architectural logic of capacity planning, Kubernetes scaling, and high-stakes deployments. We move beyond basic VM creation to explore how to build resilient, self-optimising systems. What We Cover: 1. Handling Traffic: The Art of Scaling • Horizontal vs. Vertical Scaling: We use the example of an e-commerce site to explain the "dance" between the Horizontal Pod Autoscaler (HPA), which scales your applications (Pods), and the Cluster Autoscaler, which scales your infrastructure (Nodes). • The Network Bottleneck: Did you know that slow downloads might not be a network card issue? We discuss why increasing your CPU size is often the secret to boosting network throughput. • Rightsizing: Stop guessing your machine sizes. We introduce the Recommender API to help you use historical data to pick the perfect machine type. 2. Doing it Safely: Quotas & Traffic Splitting • Capacity Planning & Quotas: The cloud isn’t infinite. Before deploying a large Managed Instance Group (MIG), you must validate your resource requirements against regional quota limits. ◦ The "Credit Card" Analogy: Think of Quotas as a credit card limit; they prevent you from accidentally "breaking the bank" or over-provisioning resources you don't need. • Safe Deployments with Cloud Run: We break down why you should never switch 100% of traffic to a new version instantly. Instead, we explore traffic splitting—starting with a small percentage (e.g., 1%) to ensure stability before a full rollout. Key Architectural Insights: • Monitoring vs. Logging: We distinguish between Monitoring (checking the health and memory of your API to prevent timeouts) and Logging (recording exactly what happened during a crash). • Expert Scenarios: Learn how to handle compute-heavy batch processing by using Cloud Functions to automatically scale a MIG only when new data arrives in a storage bucket. Subscribe to master the balance between performance, cost, and reliability! #DevOps #GCP #Kubernetes #CloudRun #Scaling #SRE #GoogleCloud #ComputeEngine