У нас вы можете посмотреть бесплатно Optimizing LTXV Video Generation: Comparing STG Impact in Img2Vid Workflows или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Hello everyone, In this video, I'll be sharing my findings on optimizing LTXV video generation quality by comparing the impact of STG during the img2vid process. Recently, I've been testing LTXV and exploring various methods to enhance its generation quality. I came across a workflow that compares the impact of STG during the txt2vid process, but I couldn’t find any comparisons on how STG affects the quality of results in img2vid generation with a ready-made workflow. To address this, I created a simple and clean workflow with minimal custom nodes, making it easy to understand and adapt. I selected images with different resolutions and themes, used the workflow with fixed settings, and generated videos using seeds 42, 43, and 44 in sequence (no cherry-picking). Regarding prompts, I used Florence 2 to generate captions for the images and then manually removed phrases like 'The image shows.' During the actual usage, I found that Florence 2's captions are very suitable as prompts for LTXV img2vid, often resulting in high-quality video generation. You can find the Florence 2 caption workflow in the compressed package. The differences between the two methods aren’t significant, but overall, STG seems to slightly improve the video generation quality. I encourage everyone to share their own findings as well. The workflow used in this video will be attached in the description below. Thank you for watching, and don't forget to like, share, and subscribe for more content! Workflow link: https://civitai.com/articles/9612