У нас вы можете посмотреть бесплатно ComfyUI - Prompt Engineering with CFG, Sampler Steps and Clip Skipping - for Stable Diffusion Users или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video explores some little explored but extremely important ideas in working with Stable Diffusion - at the end of the lecture you will understand the relationship between CFG, Sampler steps and Clip skipping and the negative and positive implications. But take your time with this one, it goes into professional level detail on the subject. These are core ideas in helping you to refine your prompts and understanding the methods currently used in Stable Diffusion. The previous lectures mentioned in the video can be found in the beginner's guide to ComfyUI Course Discounts BEGINNER'S Stable Diffusion COMFYUI and SDXL Guide https://bit.ly/GENSTART - USE CODE GENSTART ADVANCED Stable Diffusion COMFYUI and SDXL https://bit.ly/RESTAD - USE CODE RESTAD Mastery Course for Stable Diffusion (commences with this tutorial) https://cutt.ly/NwcMf3w3 This lecture also looks at how core techniques previously examined on the course can be applied holistically to improve overall workflow. Join 🏆 this channel to get access to exclusive content and perks: https://bit.ly/XOVjoin 00:00 Printing as a Metaphor for Stable Diffusion 02:50 Understanding Latent Space, Clip Networks, Diffusers and VAEs 04:55 Sampler Steps, CFG and Clip Skips 05:33 The relationship between sampler steps and the checkpoint 12:40 The relationship between CFG and the Text Prompt 18:35 The relationship between color, contrast and CFG 29:00 The CFG is broken 30:09 High steps number and the relationship with the prompt 32:56 Clip Skip and the Clip Neural Network 35:20 The CFG is completely broken 36:00 Putting this analysis of the neural networks together 39:40 Possible solutions to fix the broken CFG