У нас вы можете посмотреть бесплатно dagpc_251202_solve_eqns_graph_poly__construct_curves_find_equations_and_intersections__87 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
More detail related to the first half of the video can be found in the video at • dagM61_251202_eqn_solving_graphing_polynom... . Using a grid constructed in a rectangular window, given information sufficient to determine the boundary lines we can label the construction lines. We then choose two points on the boundary and find the equation of the straight line between them, using the process of elimination with the corresponding two equations the form y = m x + b. We then reduce an augmented matrix to find the parameters m and b, which (after correcting an error) yields the same values found using elimination. We also construct a Fundamental Triangle to find the slope of the line, and the form y = m x + b with one of the points, to obtain the equation in still another way. We construct another grid and the quadratic shape, as well as a straight line intersecting the parabolic curve at two points. Given information sufficient to label the construction lines, we mark and estimate the coordinates of the points where the curve and the straight line intersect. We then determine the equations of the straight line, and of the quadratic function corresponding to the constructed quadratic shape. Setting the formulas for the parabola and the straight line equal, we obtain an equation to solve for the x coordinates of the intersection points. The equation is quadratic, and after correcting a clerical error in the discriminant we obtain solutions close to the x values we estimated from the graph.