У нас вы можете посмотреть бесплатно Determinant of 3x3 Matrix или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The determinant of a matrix is a special number that can be calculated from a square matrix. A Matrix is a matrix that has equal number of rows and columns Example; a matrix that has 3 Rows and 3 Columns is square matrix of the order 3x3 The determinant helps us find the inverse of a matrix, tells us things about the matrix that are useful in systems of linear equations, calculus and more. The symbol for determinant is two vertical lines either side, example; |A| or Det(A) Calculating the Determinant First of all the matrix must be square (i.e. have the same number of rows as columns). Then it is just basic arithmetic. Here is how: For a 3x3 Matrix A The determinant of A equals to a₁₁(a₂₂a₃₃-a₃₂a₂₃)-a₁₂(a₂₁a₃₃-a₃₁a₂₃)+a₁₃(a₂₁a₃₂-a₃₂a₂₂) where a₁₁ is the first row first column element, a₁₂ is the first row second column element, a₁₃ is the first row third column element, a₂₁ is the second row first column element and a₂₂ is the second row second column element, a₂₃ is the second row third column element, a₃₁ is the third row first column element, a₃₂ is the third row second column element and a₃₃ is the third row third column element. Join this channel to get access to perks: / @tambuwalmathsclass