У нас вы можете посмотреть бесплатно Регуляция сердечного ритма (Миогенная, Нейрональная и Гормональная) | Физиология сердца или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Regulation of the Heartbeat QUIZ: • Regulation of the Heartbeat Physiology QUIZ Content: 0:00 Introduction 0:47 Principles Behind Regulating the Heartbeat 02:08 Myogenic Regulation 02:25 Heterometric Autoregulation 03:17 Frank Starling Mechanism 04:28 Homeometric Autoregulation 04:51 Bowditch effect 07:18 Staircase effect 07:41 Neural Regulation 08:07 Sympathetic Regulation of the Heart 14:03 Parasympathetic Regulation of the Heart 15:50 Medullary Control of the Cardiovascular System 17:38 Chemoreceptors 19:39 Baroreceptors 21:30 Intracardiac nervous system 22:31 Humoral Regulation 22:50 Renin-Angiotensin-Aldosterone System (RAAS) 25:11 Thyroid Hormones 25:55 Glucocorticoid Hormones 26:29 Natriuretic Hormones 27:19 Effects of Calcium and Potassium Levels 30:30 Summary Slide 30:56 QUIZ Welcome to Taim Talks Cardio! In this video we continue our series on Heart Physiology with the fourth segment: Regulation of the Heartbeat. 🫀Join: / @taimtalksmed 📷 Follow my IG: / taimtalksmed Complete Cheat Code for Heart Physiology series: 1st Video: Types of cardiac muscle, action potentials of pacemaker cells and contractile myocardium, and general properties of cardiomyocytes. 2nd Video: Detailed exploration of the cardiac cycle, including phase-by-phase events, valve operations, and pressure differences. 3rd Video: Cardiac output. 4th Video: Regulation of heartbeat Key Concepts Covered: 1. Overview of Cardiac Output (CO): CO = Heart Rate (HR) x Stroke Volume (SV) Regulation impacts pacemaker activity or myocardial contraction. 2. Regulation Categories: Myogenic Regulation: Involves autoregulated mechanisms by cardiomyocytes. Heterometric Regulation: Frank-Starling Mechanism: Increased end-diastolic volume (EDV) stretches cardiomyocytes, enhancing contraction and increasing SV. Homeometric Regulation: Bowditch Effect (Staircase Effect): Increased HR leads to stronger contractions due to enhanced calcium handling in cells. Neural Regulation: Involves the nervous system, divided into extracardiac and intracardiac regulation. Extracardiac Regulation: Sympathetic Nervous System: Increases HR, contractility, and CO via norepinephrine and epinephrine on β1-adrenergic receptors. Activates ion channels to enhance calcium influx, increasing contraction strength and speed. Parasympathetic Nervous System: Reduces HR and conduction velocity via acetylcholine on muscarinic receptors. Inhibits adenylyl cyclase, decreasing cAMP levels and activating K+ channels to hyperpolarize the cell membrane. Medullary Control: Integrates input from baroreceptors and chemoreceptors to modulate sympathetic and parasympathetic activity. Intracardiac Regulation: Intramural ganglia modulate cardiac function independent of direct CNS control, receiving and integrating signals for coordinated cardiac response. Humoral Regulation: Involves hormones in the blood that influence HR, contractility, and CO. Epinephrine: Released by the adrenal medulla, activating β1-adrenergic receptors. Renin-Angiotensin-Aldosterone System (RAAS): Angiotensin II increases contractility, vasoconstriction, and blood volume. Aldosterone promotes sodium and water reabsorption, increasing blood pressure and CO. Thyroid Hormones (T3): Increase HR and contractility by influencing gene expression and ion channel activity. Glucocorticoids: Enhance myocardial contractility and adrenergic receptor sensitivity. Natriuretic Peptides (ANP, BNP): Reduce blood volume and pressure by promoting sodium and water excretion, decreasing preload and afterload. 3. Ion Regulation: Calcium: Hypercalcemia increases contractility, shortening the QT interval. Hypocalcemia decreases contractility, prolonging the QT interval. Potassium: Hyperkalemia makes cells less negative, closer to depolarization threshold, increasing the risk of arrhythmias. Hypokalemia has the opposite effect, reducing excitability. By understanding these regulatory mechanisms, you'll have a comprehensive knowledge of how the body maintains cardiac function under various physiological conditions. #cardiacphysiology #heartfunction #extracardiac #ecg #medicaleducation #usmlepreparation #nursingeducation #premed #heartanatomy Sources: University lectures and notes Barrett, K. E., Barman, S. M., Boitano, S., & Brooks, H. L. (2016). Ganong's review of medical physiology (25th ed.). McGraw-Hill Education. Hall, J. E. (2016). Guyton and Hall textbook of medical physiology (13th ed.). Elsevier. Mohrman, D. E., & Heller, L. J. (2014). Cardiovascular physiology (11th ed.). McGraw-Hill Education. Biorender