У нас вы можете посмотреть бесплатно Extreme's Markus Nispel On Agent Governance: 3 Controls For Production Autonomy или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Extreme Networks deployed autonomous AI agents in production network infrastructure using a three-layer governance model that solves the trust problem: deployment scope, action scope, and autonomy controls. Markus Nispel, CTO EMEA and Head of AI Engineering, breaks down their evolution from 2018 AI ops to multi-agent systems that analyze event correlations impossible for humans and auto-generate support tickets. Their ARC framework (Acceleration, Replacement, Creation) separates mandatory automation from competitive differentiation, focusing investment on creation use cases where ROI discussions become simpler. They reduced time-to-knowledge by 90% through RAG systems that let new engineers access tens of thousands of documentation pages instantly, addressing critical talent shortages in network operations. CHAPTERS: 00:00 Introduction 01:13 Extreme Networks background and AI evolution from 2018 02:56 Early AI and machine learning use cases in network operations 04:55 Challenges bringing generative AI to deterministic infrastructure 08:17 The ARC framework: Acceleration, Replacement, and Creation 09:12 Managing complexity and POC-to-production challenges 11:36 Prioritizing use cases and getting stakeholder buy-in 12:57 Creation use cases: Network operations and troubleshooting 16:06 90% time-to-knowledge reduction through RAG systems 17:27 Building trust through accuracy and transparency 18:01 Agent governance: Explainability, transparency, and control 19:57 Three-layer governance model: Deployment, action, autonomy 21:40 Managing pilot-to-production deployment at scale 23:24 Measuring accuracy: Pre-production vs production metrics 24:37 Evaluation challenges and emerging business opportunities 26:30 Pre-production SME validation and GTAC collaboration 27:28 AI team structure and organizational evolution 29:32 The AI mesh: Distributed ownership with central architecture 31:24 Data diversity and cross-domain agent collaboration 31:46 Build vs buy decisions for AI systems 33:41 Priorities and challenges: Continuous rebuilding in AI 34:39 Agent interoperability: MCP, A2A, and the agentic web 36:02 AGI discussion and AI as a tool 38:29 Personal AI usage and tools 39:25 Resources for staying current in AI 40:16 Key concepts: AI replacing humans and abundance 42:24 Closing and where to follow Markus