У нас вы можете посмотреть бесплатно Definitive Proof of the Goldbach Conjecture или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The Goldbach conjecture states that every even integer is the sum of two primes. This conjecture was first proposed by German mathematician Christian Goldbach in 1742 and, despite being obviously true, has remained unproven. To prove this conjecture, the set of even integers that have have the fewest number of prime pairs compared to other even integers. This subset is the set of all even integers $n$ that are not divisible by a prime number less than $\sqrt{n}$. An equation was derived that approximates the number of prime pairs for these values of $n$. It was then proven that this equation never goes to zero for any $n$, and as $n$ increases, the number of prime pairs also increases, thus validating Goldbach's conjecture. Error analysis was performed to show that the difference between the approximation and the actual number of prime pairs is small enough so that for all $n$ greater than 622, the number of prime pairs of $n$ is greater than 1, thus proving Goldbach's conjecture.