У нас вы можете посмотреть бесплатно Evaluating LLM Performance for Named Entity Recognition with Labelbox или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🎥 Evaluating LLM Performance for Named Entity Recognition with Labelbox 🏷️🔍 In this video, we'll demonstrate how to leverage Labelbox's powerful features to identify named entities, such as brands and products, using large language models (LLMs). 🤖📚 We'll also explore how to set up a model experiment to compare LLM predictions against human-validated ground truth annotations. 📊✅ Chapters: 00:00 Setting up Ontology 📋🏷️ 00:32 Creating a New Ontology 🆕📋 01:13 Navigating to Dataset 📂🔍 01:33 Selecting Models for Prediction 🤖🔍 02:04 Selecting Ontology and Predicting 📋🎯 02:50 Generating Previews and Examples 👀🖼️ 03:21 Saving the Model as an App 💾📱 04:04 Viewing Model Run Results 📊👀 04:36 Extracting Responses Using Labelbox's API 📥🐍 04:49 Processing the JSON Response 📦🔍 05:19 Passing Data to Annotate Project 📤🏷️ 06:46 Sending Data for Initial Review 📨👀 07:16 Reviewing and Validating Data ✅🔍 08:06 Evaluating LLM Performance 📈🤖 08:38 Setting up Model Experiment 🧪⚙️ 09:28 Uploading Model Run Outputs for Comparison 📤📊 10:28 Executing the Upload ⏫💾 10:49 Evaluating Model Performance 📊✅ 11:18 Analyzing Model Metrics 📈🔍 Key Takeaways: ✅ Create a custom ontology for named entity recognition ✅ Select and run foundation models, like GPT, for predictions ✅ Customize prompts and generate previews for optimal performance ✅ Save model configurations as reusable apps ✅ Extract model run responses using Labelbox's API and process JSON ✅ Pass data to annotation projects for human review and validation ✅ Set up model experiments to compare LLM predictions against ground truth ✅ Analyze model performance metrics and identify edge cases Ready to supercharge your named entity recognition workflows? 🚀 Visit https://labelbox.com to start leveraging the power of Labelbox and LLMs for your NLP tasks today! 🌟 Don't miss out on the latest advancements in data annotation and model evaluation! Subscribe to our channel 🔔 Join our community forum 👥: https://community.labelbox.com/ Follow us on social media 🌐: / labelbox , / labelbox #Labelbox #NamedEntityRecognition #NLP #LLMs #ModelEvaluation #DataAnnotation #HumanInTheLoop #GPT #ModelExperiments #GroundTruth #PerformanceMetrics #EdgeCases #labelingsolutions #labeling #llmevaluation #llm #TextAnnotation #SemanticUnderstanding #EntityExtraction #InformationRetrieval #LanguageModels #TransformerModels #Few-ShotLearning #PromptEngineering #NLPPipelines #LLMApplications Stay tuned for more in-depth tutorials and real-world use cases as we continue to explore the exciting possibilities of Labelbox and LLMs for natural language processing! 🎓🔬 Let's unlock the full potential of your text data together. 💪📚