У нас вы можете посмотреть бесплатно AI 如何读懂 35 亿年的“上帝代码”?Google AlphaGenome или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
AI 不仅能下围棋、预测蛋白质,现在还要“破译”人类的生命天书?如果你以为人类基因组计划完成后我们就读懂了 DNA,那你就大错特错了。直到今天,面对这部 35 亿年写就的代码,我们依然是“文盲”。本期视频,我将深度解读 Google DeepMind 发表在《Nature》上的重磅研究——AlphaGenome。我们将结合 DeepMind 核心团队的独家访谈,为你揭秘这群科学家是如何在谷歌食堂里通过一次午餐聊天,打破了困扰学界多年的“不可能的权衡”,并利用 AI 这种“变焦神镜”去精准预测癌症突变、改写生命科学的未来。 AI can not only play Go and predict proteins, but is now "deciphering" the code of life? If you think we understood DNA after the Human Genome Project, think again. To this day, we are still largely "illiterate" when faced with this code written over 3.5 billion years. In this video, I dive deep into the groundbreaking Google DeepMind paper published in Nature: AlphaGenome. Drawing from exclusive interviews with the core team, we reveal how a "Eureka moment" at a Google lunch table solved an engineering puzzle that baffled scientists for years, and how this AI "zoom lens" is revolutionizing cancer mutation prediction and the future of life sciences. ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 📄 核心内容 & 关键词 | Key Content & Keywords: 读取 vs 破译 (Reading vs. Deciphering): 为什么 Ziga 强调全基因组测序只是“扫描”了文档,而 AlphaGenome 的使命是理解生命的“深层语法”?我们深入探讨从单纯的数据获取到真正的生物学理解的范式转移。 Why does Ziga emphasize that genome sequencing is just "scanning" the document, while AlphaGenome's mission is to understand the "deep grammar" of life? We explore this paradigm shift from data acquisition to true biological comprehension. 不可能的权衡 (The Impossible Trade-off): 长期以来,基因模型要么像显微镜(高精度但视野窄),要么像广角镜(视野广但模糊)。AlphaGenome 如何打破这一物理魔咒,同时实现 100万碱基的长上下文 (Long Context) 与单碱基分辨率 (High Resolution)? For too long, genomic models were either microscopes (high precision, narrow view) or wide-angle lenses (wide view, blurry). How did AlphaGenome break this curse to achieve both 1 million base pair context and single-base resolution? 跨副本注意力机制 (Cross-Replica Attention): 揭秘那个在午餐桌上诞生的工程奇迹。DeepMind 团队如何通过将长序列切片并让 TPU 之间“互相通话”,解决了计算量平方级增长的内存噩梦? Unpacking the engineering miracle born at a lunch table. How did the DeepMind team solve the memory nightmare by slicing sequences and enabling TPUs to "talk to each other"? 多模态生物学 (Multimodal Biology): 从剪接 (Splicing) 到三维接触图谱 (Contact Maps),AlphaGenome 如何像全能神医一样,在一个模型中统合基因表达、表观遗传和 3D 结构,发现隐藏的因果链条? From splicing to 3D contact maps, how does AlphaGenome act like an all-knowing doctor, integrating gene expression, epigenetics, and 3D structure in one model to reveal hidden causal links? ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 🔔 订阅并加入我的会员 | Subscribe & Join my membership! 你认为 AI “破译”基因组后,人类面临的最大伦理挑战会是什么?在评论区分享你的看法! Once AI fully "deciphers" the genome, what do you think is the biggest ethical challenge humanity will face? Share your thoughts in the comments below! 如果你喜欢本期内容,请不要忘记点赞、分享,并【订阅】我的频道,开启小铃铛,第一时间获取关于前沿科技的深度解析。 If you enjoyed this video, please like, share, and SUBSCRIBE for more deep dives into our technological future. 👉 支持我持续创作 | Support My Work: 加入我的会员频道,提前观看视频并获得专属福利! Join my channel membership to get early access to videos and exclusive perks! / @wow.insight ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ • AlphaGenome author roundtable https://www.nature.com/articles/s4158... ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ #AlphaGenome #DeepMind #GoogleAI #Genomics #Bioinformatics #ArtificialIntelligence #CancerResearch #DNA #LifeScience #NaturePaper #基因组 #人工智能 #谷歌DeepMind #生命科学 #生物科技 #精准医疗 #癌症研究 #深度学习 #科技解析