У нас вы можете посмотреть бесплатно Real Azure Data Factory Project | End-to-End CSV to SQL Pipeline или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
📌 This is a production-style Azure Data Factory project — not a toy example. In this video, I build an end-to-end, incremental data ingestion pipeline using Azure Data Factory, Azure Blob Storage, and Azure SQL Database. Instead of loading a single file, we design a dynamic pipeline that scans a Blob Storage container and automatically ingests all incoming CSV files into staging tables, then applies business logic using SQL stored procedures. The focus is on real data engineering patterns: staging layers, idempotent loads, referential integrity validation, and explicit error handling. ──────────────────────────── 🔧 PIPELINE OVERVIEW ──────────────────────────── • Dynamic file discovery using Get Metadata • ForEach loop to process all files in the container • Copy Activity to load raw data into staging tables • SQL Stored Procedures to: – Deduplicate dimension tables – Validate foreign keys – Insert valid records – Quarantine invalid records into an error table ──────────────────────────── 🗃️ DATA MODEL ──────────────────────────── Staging tables (raw ingestion): • stg_customers • stg_products • stg_orders Final curated tables: • customers • products • orders Error handling: • orders_error (invalid records + reason) ──────────────────────────── ⚙️ KEY DESIGN PRINCIPLES ──────────────────────────── • Separation of concerns: Azure Data Factory for orchestration, SQL for business logic • Incremental & idempotent processing: Safe to re-run without duplicates • Explicit error handling: Invalid data is never silently dropped • Production-style design: Clear, explainable, and interview-ready ──────────────────────────── ⏱️ VIDEO CHAPTERS ──────────────────────────── 00:00 – Project overview & goals 02:30 – Architecture & data model 05:10 – Azure Blob Storage setup 07:40 – SQL staging & final tables 12:00 – Get Metadata & file discovery 16:30 – ForEach & Copy activity logic 25:10 – Stored procedures (deduplication & FK validation) 36:40 – End-to-end pipeline execution 44:00 – Final validation & conclusions ──────────────────────────── 🔗 GITHUB REPOSITORY ──────────────────────────── Full project, SQL schema, and README: https://github.com/MasouData/adf-data-pipe... ──────────────────────────── ℹ️ NOTES ──────────────────────────── This project intentionally focuses on correctness, clarity, and production-style design rather than advanced optimizations such as CDC, watermarking, or streaming ingestion. ──────────────────────────── 🏷️ TAGS ──────────────────────────── #AzureDataFactory #AzureSQL #DataEngineering #ETL #ADF #SQL #Azure