У нас вы можете посмотреть бесплатно Bound on the Sum of Minimum Degrees of Graphs and their Complements | Graph Theory Proofs или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Support the production of this course by joining Wrath of Math to access all my graph theory videos! / @wrathofmath 🛍 Check out the coolest math clothes in the world: https://mathshion.com/ Graph Theory course: • Graph Theory Graph Theory exercises: • Graph Theory Exercises Get the textbook! https://amzn.to/3HvI535 Business Inquiries: wrathofmathlessons@gmail.com We know the degree of a vertex in a simple graph with n vertices has an upper bound of n-1. The degree of a vertex is n-1 when it is adjacent to every vertex in the graph except for itself (it cannot be adjacent to itself). Then certainly the minimum degree of a graph is less than or equal to n-1. But we can go further, if we add the minimum degree of a graph to the minimum degree of its complement graph, that too is less than or equal to n-1. Pretty cool, and we will prove this graph theory inequality in today's video lesson! ◆ Support Wrath of Math on Patreon: / wrathofmathlessons Follow Wrath of Math on... ● Instagram: / wrathofmathedu ● Facebook: / wrathofmath ● Twitter: / wrathofmathedu