У нас вы можете посмотреть бесплатно Forecasting Crop Productivity with High-Resolution Satellite Data: Scaling Up to the Whole... или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
"Forecasting Crop Productivity with High-Resolution Satellite Data: Scaling Up to the Whole US Corn Belt" -- Sibo Wang, University of Illinois at Urbana-Champaign High-performance computing, along with satellite datasets that provide a wide spatiotemporal coverage of agricultural lands, enables a novel and data-oriented approach to understand crop growth. Using Blue Waters, we developed a hybrid crop model (CLM-APSIM) that produces reliable long-term yield predictions in the US Corn Belt. We also developed a generic multi-sensor fusion algorithm, STAIR, that integrates satellite images at a variety of spatial and temporal resolutions. Finally, a pixel-level crop yield model, ASPIRE, uses remotely sensed images, soil condition, and climate data to predict crop yield at field level. The ultimate goal of our project is to improve our predictability skill for global crop yield modeling by integrating site measurements, satellite observations, and process-based modeling.