У нас вы можете посмотреть бесплатно The PARK Stack: The LAMP Stack of the AI Era | Ben Lorica или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this conversation, we sit down with Ben Lorica - Principal at Gradient Flow, host of The Data Exchange podcast, former Chief Data Scientist at O’Reilly Media, and co-chair of several leading industry conferences - to unpack the PARK stack and why it’s emerging as a common pattern for building production AI systems. Ben coined the term PARK stack to describe an architecture increasingly used by teams building custom AI platforms at scale: PyTorch for training and post-training workflows, open models for customization and inference, Ray for distributed compute, and Kubernetes for production orchestration We discuss how enterprises are approaching AI infrastructure today, the tradeoffs between API-only approaches versus custom platforms, and why distributed inference and heterogeneous compute are becoming central concerns in production AI. Ben also shares perspective on talent, hiring, and how open-source ecosystems lower the barrier for enterprises adopting modern AI infrastructure. This conversation is especially relevant for AI platform teams, infrastructure engineers, and enterprise leaders thinking about how to move AI systems from experimentation into reliable, scalable production. 📄 Ben’s article on the PARK stack: https://thedataexchange.media/the-par... 📬 Ben’s newsletter, Gradient Flow: https://gradientflow.substack.com/ ⏱️ Timestamps 00:00 Ben Lorica on AI Infrastructure and Production AI 00:40 Three Enterprise AI Infrastructure Choices 02:57 What Is the PARK Stack? (PyTorch, Models, Ray, Kubernetes) 04:01 PARK Stack Components and Why They Work Together 07:45 Production AI Systems: Inference, Hardware, and Efficiency 11:53 AI Infrastructure Talent, Hiring, and Open-Source Communities 13:48 Thoughts on the Future of Production AI Host in the video: @LindaVivah , Staff Developer Advocate at Anyscale Subscribe to our YouTube channel to stay up-to-date on the future of AI! @anyscale 🔗 Connect with us: LinkedIn: / joinanyscale