У нас вы можете посмотреть бесплатно Philipp Grohs: Wavelets, shearlets and geometric frames - Part 1 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: Chapter markers and keywords to watch the parts of your choice in the video Videos enriched with abstracts, bibliographies, Mathematics Subject Classification Multi-criteria search by author, title, tags, mathematical area In several applications in signal processing it has proven useful to decompose a given signal in a multiscale dictionary, for instance to achieve compression by coefficient thresholding or to solve inverse problems. The most popular family of such dictionaries are undoubtedly wavelets which have had a tremendous impact in applied mathematics since Daubechies' construction of orthonormal wavelet bases with compact support in the 1980s. While wavelets are now a well-established tool in numerical signal processing (for instance the JPEG2000 coding standard is based on a wavelet transform) it has been recognized in the past decades that they also possess several shortcomings, in particular with respect to the treatment of multidimensional data where anisotropic structures such as edges in images are typically present. This deficiency of wavelets has given birth to the research area of geometric multiscale analysis where frame constructions which are optimally adapted to anisotropic structures are sought. A milestone in this area has been the construction of curvelet and shearlet frames which are indeed capable of optimally resolving curved singularities in multidimensional data. In this course we will outline these developments, starting with a short introduction to wavelets and then moving on to more recent constructions of curvelets, shearlets and ridgelets. We will discuss their applicability to diverse problems in signal processing such as compression, denoising, morphological component analysis, or the solution of transport PDEs. Implementation aspects will also be covered. (Slides in attachment). Recording during the thematic meeting: "Computational harmonic analysis - with applications to signal and image processing" the October 20, 2014 at the Centre International de Rencontres Mathématiques (Marseille, France) Filmmaker: Guillaume Hennenfent