У нас вы можете посмотреть бесплатно Period-Doubling Route to Chaos | Universality, Experiments, ODEs, and Maps или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The bifurcation pattern seen in the logistic map turns out to be universal across a wide range of dynamic systems, including systems of differential equations, and more importantly, experiments. It seems the logistic map was just the first example of a large class of systems, which led to the discovery of new constants in the universe. ► Next, Feigenbaum's renormalization analysis of period-doubling, demonstrating where the universal constants come from • Renormalization Theory for Dynamical Syste... ► Logistic map Introduction • Logistic Map, Part 1: Period Doubling Rout... Bifurcation diagram • Logistic Map, Part 2: Bifurcation Diagram ... Analysis of fixed points and cycles • Logistic Map, Part 3: Bifurcation Point An... ► Additional background Introduction to mappings • Maps, Discrete Time Dynamical Systems - In... Logistic equation (1D ODE) • Population Growth- The Logistic Model Lorenz map on strange attractor • Dynamics on Lorenz Attractor | Lorenz Map,... Lorenz equations introduction • 3D Systems, Lorenz Equations Derived, Chao... Definitions of chaos and attractor • Chaotic Attractors: a Working Definition o... ► Ghosts and bottlenecks In 1D differential equations • Flows on the Circle | Ghosts and Bottlenec... In 2D differential equations • Bifurcations in 2D, Part 1: Introduction, ... ► From 'Nonlinear Dynamics and Chaos' (online course). Playlist https://is.gd/NonlinearDynamics ► Dr. Shane Ross, Virginia Tech professor (Caltech PhD) Subscribe https://is.gd/RossLabSubscribe ► Follow me on Twitter / rossdynamicslab ► Course lecture notes (PDF) https://is.gd/NonlinearDynamicsNotes ► Advanced lecture on maps from another of my courses • Center Manifold Theory for Maps, with Work... ► Robert May's 1976 article introducing the logistic map (PDF) https://is.gd/logisticmappaper References: Steven Strogatz, "Nonlinear Dynamics and Chaos", Chapter 10: One-Dimensional Maps ► Free online courses by Dr. Ross 📚Nonlinear Dynamics & Chaos https://is.gd/NonlinearDynamics 📚Hamiltonian Dynamics https://is.gd/AdvancedDynamics 📚Lagrangian & 3D Rigid Body Dynamics https://is.gd/AnalyticalDynamics 📚Center Manifolds, Normal Forms, and Bifurcations https://is.gd/CenterManifolds 📚Attitude Dynamics & Control https://is.gd/SpaceVehicleDynamics 📚3-Body Problem Orbital Mechanics https://is.gd/3BodyProblem 📚Space Manifolds https://is.gd/SpaceManifolds intermittent period doubling cascade period-doubling bifurcation flip bifurcation discrete map analog of logistic equation Poincare map largest Liapunov exponent fractal dimension of lorenz attractor box-counting dimension crumpled paper stable focus unstable focus supercritical subcritical topological equivalence genetic switch structural stability Andronov-Hopf Andronov-Poincare-Hopf small epsilon method of multiple scales two-timing Van der Pol Oscillator Duffing oscillator nonlinear oscillators nonlinear oscillation nerve cells driven current nonlinear circuit glycolysis biological chemical oscillation Liapunov gradient systems Conley index theory gradient system autonomous on the plane phase plane are introduced 2D ordinary differential equations cylinder bifurcation robustness fragility cusp unfolding perturbations structural stability emergence critical point critical slowing down supercritical bifurcation subcritical bifurcations buckling beam model change of stability nonlinear dynamics dynamical systems differential equations dimensions phase space Poincare Strogatz graphical method Fixed Point Equilibrium Equilibria Stability Stable Point Unstable Point Linear Stability Analysis Vector Field Two-Dimensional 2-dimensional Functions Hamiltonian Hamilton streamlines weather vortex dynamics point vortices topology Verhulst Oscillators Synchrony Torus friends on track roller racer dynamics on torus Lorenz equations chaotic strange attractor convection chaos #NonlinearDynamics #DynamicalSystems #ChaosTheory #Bifurcation #LogisticMap #PeriodDoubling #DifferenceEquation #PoincareMap #chaos #LorenzAttractor #LyapunovExponent #Lyapunov #Liapunov #Oscillators #Synchrony #Torus #Hopf #HopfBifurcation #NonlinearOscillators #AveragingTheory #LimitCycle #Oscillations #nullclines #RelaxationOscillations #VanDerPol #VanDerPolOscillator #LimitCycles #VectorFields #topology #geometry #IndexTheory #EnergyConservation #Hamiltonian #Streamfunction #Streamlines #Vortex #SkewGradient #Gradient #PopulationBiology #FixedPoint #DifferentialEquations #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CuspBifurcation #CriticalPoint #PitchforkBifurcation #robust #StructuralStability #DifferentialEquations #dynamics #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Poincare #Strogatz #Lorenz #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #NonlinearODEs #StablePoint #UnstablePoint #LinearStability #StabilityAnalysis #VectorField #TwoDimensional #Functions #PopulationGrowth #PopulationDynamics #Population #Logistic #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion #dynamics #Poincare #mathematicians #maths #mathstudents #mathematician #mathfacts #mathskills #mathtricks #KAMtori #Hamiltonian