У нас вы можете посмотреть бесплатно Latent User Intent Modeling in Recommender Systems или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Speaker: Bo Chang, Software Engineer, Google Brain The current sequential recommender systems mainly rely on users’ item-level interaction history to capture topical interests and lacks a high-level understanding of user intent. It is challenging to explicitly define and enumerate all possible user intents. We propose to use latent variable models to capture user intents as latent variables through encoding and decoding user behavior signals, with an application to a large industrial recommender system.