У нас вы можете посмотреть бесплатно COMPLETE DETECTRON2 TUTORIAL | Instance Segmentation, Object Detection, Keypoints Detection and more или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This is a complete detectron2 tutorial for setting up detectron2, running it on images and videos. Detectron2 is FacebookAI's framework for object detection, instance segmentation, and keypoints detection written in PyTorch. Detectron2 makes it convenient to run pre-trained models or train the models from scratch. In this Detectron2 tutorial, pre-trained Instance Segmentation, Object detection, keypoints detection, panoptic segmentation, and LVIS segmentation models are covered. In detectron2, MaskRCNN is used for semantic segmentation while Faster RCNN is used for object detection. You do not need to download any pre-trained model. The detectron2 takes care of it automatically. * Code is available for our Patreon Supporters* / thecodingbug --------------------------------------------- ► Time Stamps: Introduction: (0:00) Setup Detectron2: (0:25) Object Detection: (2:45) Instance Segmentation: (6:55) Keypoints Detection: (8:49) LVIS Segmentation: (9:29) Panoptic Segmentation: (11:02) Detectron2 on Videos: (12:41) --------------------------------------------- ► Commands: git clone https://github.com/facebookresearch/d... pip install -e . conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch pip install opencv-python --------------------------------------------- ► Links: https://github.com/facebookresearch/d... https://github.com/facebookresearch/d... --------------------------------------------- Want to discuss more? ►Join my discord: / discord #TheCodingBug --------------------------------------------- ► My Other Tutorials: ○ Instance Segmentation as Rendering: • DETECTRON2 PointRend Tutorial | Accurate I... ○ Detectron2 Complete Tutorial: • COMPLETE DETECTRON2 TUTORIAL | Instance Se... ○ Colorize Black and White Images and Videos using Python OpenCV: • Video & Image Colorization Using OpenCV Py... ○ Face Detection Using OpenCV Python with CUDA GPU Acceleration: • Face Detection Using OpenCV with CUDA GPU ... ○ Build and Install OpenCV 4.5.1 With CUDA GPU Support on Windows 10: • Build and Install OpenCV With CUDA GPU Sup... ○ Install TensorFlow Under 90 Seconds • Install TensorFlow GPU on Windows 10 IN 90... ○ Install PyTorch Under 90 Seconds • Install PyTorch GPU on Windows 10 or Linux... ○ YOLOv4 On Android Using TFLite: • YOLOv4 TFLite Object Detection Android App... ○ Custom YOLOv4 Object Detection with TensorFlow and TFLite : • Custom Object Detection with TensorFlow YO... ○ Darknet YOLOv4 Custom Object Detection: Part 2 (Training YOLOv4 Darknet): • YOLOv4 Custom Object Detection Tutorial: P... ○ Darknet YOLOv4 Custom Object Detection: Part 1 (Preparing Custom Dataset): • YOLOv4 Custom Object Detection Tutorial: P... ○ YOLOv4 Object Detection with TensorFlow, TFLite and TensorRT: • YOLOv4 Object Detection with TensorFlow, T... ○ Darknet YOLOv4 Object Detection for Windows 10 on Images, Videos, and Webcams: • Darknet YOLOv4 Object Detection Tutorial f... ○ Real-Time Object Detection on Webcam and Videos Using OpenCV With YOLOv3 and YOLOv4 | Windows Linux: • YOLOv4 and YOLOv3 Object Detection Using ... ○ Build and Install OpenCV 4.4.0 With CUDA (GPU) Support on Windows 10: • Build and Install OpenCV With CUDA (GPU) S... ○ Install TensorFlow GPU and PyTorch with CUDA on Windows 10 Anaconda | CUDA 10.1 cuDNN 7.6: • Install TensorFlow GPU and PyTorch with CU... ○ Real-time Multiple Object Tracking with YOLOv4 TensorFlow and Deep Sort | Linux, Windows: • Object Tracking with TensorFlow YOLOv4 | L... --------------------------------------------- ► Follow us on Twitter: / bugcodingthe ► Support us on Patreon: / thecodingbug --------------------------------------------- DISCLAIMER: Links included in this description might be affiliate links. If you purchase a product or service with the links that I provide I may receive a small commission. There is no additional charge to you!