У нас вы можете посмотреть бесплатно Fake News Detection: generating training examples for NLI and TNLI models -- JF Bussotti, P Papotti или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Fake News Detection: generating training examples for NLI and TNLI models JF Bussotti, P Papotti Wimmics Seminar - 16/11/2023 @wimmicsinria3092 Abstract: Computational fact-checking relies on supervised models to verify claims based on given evidence, requiring a resource-intensive process to annotate large volumes of training data. We introduce Unown, a novel framework that generates training instances for fact-checking systems automatically using both textual and tabular content. Unown selects relevant evidence and generates supporting and refuting claims with advanced negation artifacts. Designed to be flexible, Unown accommodates various strategies for evidence selection and claim generation, offering unparalleled adaptability. We comprehensively evaluate Unown on both text-only and table+text benchmarks, including Feverous, SciFact, and MMFC, a new multi-modal fact-checking dataset. Our results demonstrate that Unown examples are of comparable quality to expert-labeled data, even enabling models to achieve up to 5% higher accuracy. The code, data, and models are available at https://github.com/JeFlBu/unown.git.