У нас вы можете посмотреть бесплатно LLM Course – Build a Semantic Book Recommender (Python, OpenAI, LangChain, Gradio) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Discover how to build an intelligent book recommendation system using the power of large language models and Python. Learn to transform book descriptions into mathematical representations that enable precise content-based matching. By the end of this course, you'll have built a recommendation engine that helps readers discover their next favorite book. 💻 Code from this tutorial: https://github.com/t-redactyl/llm-sem... 🏗️ JetBrains provided a grant to make this course possible. ⭐️ Resources ⭐️ Download PyCharm: https://jb.gg/pycharm-fcc The only Python IDE you need to build data models and AI agents. Free forever, plus one month of Pro included. Kaggle datasets: https://kaggle.com/datasets 7K books dataset by Dylan Castillo: https://kaggle.com/datasets/dylanjcas... Hugging Face free NLP course: https://huggingface.co/learn/nlp-cour... Explanation of transformer encoder-decoder models (from Hugging Face NLP course): https://huggingface.co/learn/nlp-cour... Explanation of transformer decoder-only models (from Hugging Face NLP course): https://huggingface.co/learn/nlp-cour... Explanation of transformer encoder-only models (from Hugging Face NLP course): https://huggingface.co/learn/nlp-cour... Hugging Face Hub models page: https://huggingface.co/models OpenAI models: https://platform.openai.com/docs/models Explanation of vector index (from Weaviate): https://weaviate.io/developers/weavia... LangChain Python docs: https://python.langchain.com/docs/int... LangChain chat model integrations: https://python.langchain.com/docs/int... OpenAI billing page: https://platform.openai.com/settings/... OpenAI API keys page: https://platform.openai.com/settings/... Explanation of zero-shot classification (from Hugging Face): https://huggingface.co/tasks/zero-sho... Information about fine-tuned emotion classification model: https://dataloop.ai/library/model/j-h... Getting started with Gradio: https://gradio.app/guides/quickstart Gradio playground: https://gradio.app/playground Gradio themes: https://gradio.app/guides/theming-guide Further work by Jodie about LLMs Talk from GOTO Amsterdam giving an overview of LLMs: • Beyond the Hype: A Realistic Look at Large... Talk from NDC Oslo about whether LLMs are showing signs of humanity: • Mirror, mirror: LLMs and the illusion of h... Talk from PyCon US about hallucinations in LLMs: • Talks - Jodie Burchell: Lies, damned lies ... Tutorial on doing sentiment analysis with LLMs: https://blog.jetbrains.com/pycharm/20... Article on LLM’s understanding of language: https://t-redactyl.io/blog/2024/06/ca... Article on sentience in LLMs: https://t-redactyl.io/blog/2024/07/co... Article on intelligence in LLMs: https://t-redactyl.io/blog/2024/07/ar... 12:25 ❤️ Support for this channel comes from our friends at Scrimba – the coding platform that's reinvented interactive learning: https://scrimba.com/freecodecamp ⭐️ Chapters ⭐️ 0:00:00 Intro 0:03:05 Introduction to getting and preparing text data 0:05:51 Starting a new PyCharm project 0:16:59 Patterns of missing data 0:25:21 Checking the number of categories 0:28:27 Remove short descriptions 0:34:36 Final cleaning steps 0:38:11 Introduction to LLMs and vector search 0:54:43 LangChain 0:58:46 Splitting the books using CharacterTextSplitter 1:02:57 Building the vector database 1:05:50 Getting book recommendations using vector search 1:11:07 Introduction to zero-shot text classification using LLMs 1:15:34 Finding LLMs for zero-shot classification on Hugging Face 1:22:21 Classifying book descriptions 1:26:24 Checking classifier accuracy 1:35:19 Introduction to using LLMs for sentiment analysis 1:39:25 Finding fine-tuned LLMs for sentiment analysis 1:42:07 Extracting emotions from book descriptions 1:54:25 Introduction to Gradio 1:56:51 Building a Gradio dashboard to recommend books 2:12:49 Outro